Clinical application of three-dimensional printing technology in laparoscopic right hemicolectomy for colon cancer: a pilot study and video demonstration.
IF 3.2 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Zongxian Zhao, Rundong Yao, Yuan Yao, Zongju Hu, Shu Zhu, Fusheng Wang
{"title":"Clinical application of three-dimensional printing technology in laparoscopic right hemicolectomy for colon cancer: a pilot study and video demonstration.","authors":"Zongxian Zhao, Rundong Yao, Yuan Yao, Zongju Hu, Shu Zhu, Fusheng Wang","doi":"10.1186/s41205-025-00258-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Patients who undergo laparoscopic right hemicolectomy often have vascular anomalies, creating challenges for surgeons. Preoperative identification of vascular anomalies and intraoperative precise navigation can enhance surgical safety and reduce the difficulty of the procedure. Accordingly, this study aimed to explore and evaluate the application of three-dimensional (3D) reconstruction and printing technology in laparoscopic right hemicolectomy and its assistance in preoperative planning and intraoperative navigation.</p><p><strong>Method: </strong>11 3D-reconstructed images and printed models of right hemicolectomy vasculature were preoperatively created to assist in developing individualized surgical plans. Intraoperatively, essential vessels (gastrocolic trunk of Henle, GTH) were identified and located with the help of the 3D printed models. Additionally, 36 cases without the assistance of 3D printing were retrospectively collected for the control group. Statistical analysis was performed to evaluate the impact of the 3D printed models on surgery-related characteristics.</p><p><strong>Results: </strong>The 3D-printed models accurately depicted anatomical structures, particularly the positions and adjacent relationships of essential vessels, including the superior mesenteric artery (SMA), superior mesenteric vein (SMV), GTH and related arterial/venous branches. The operation time was significantly lower in the 3D printing group (198.6 ± 8.8 min in 3D printing group vs. 230.7 ± 47.5 min in control group, P = 0.025).</p><p><strong>Conclusions: </strong>In conclusion, this study represents a novel vascular 3D printed modelfor surgical planning and intraoperative navigation in laparoscopic right hemicolectomy. It underscores the potential clinical applications of 3D printing in this context. Preoperative identification of vascular anomalies and precise intraoperative navigation can feasibly reduce surgical difficulty and enhance safety.</p>","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":"11 1","pages":"8"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11869718/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D printing in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41205-025-00258-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Patients who undergo laparoscopic right hemicolectomy often have vascular anomalies, creating challenges for surgeons. Preoperative identification of vascular anomalies and intraoperative precise navigation can enhance surgical safety and reduce the difficulty of the procedure. Accordingly, this study aimed to explore and evaluate the application of three-dimensional (3D) reconstruction and printing technology in laparoscopic right hemicolectomy and its assistance in preoperative planning and intraoperative navigation.
Method: 11 3D-reconstructed images and printed models of right hemicolectomy vasculature were preoperatively created to assist in developing individualized surgical plans. Intraoperatively, essential vessels (gastrocolic trunk of Henle, GTH) were identified and located with the help of the 3D printed models. Additionally, 36 cases without the assistance of 3D printing were retrospectively collected for the control group. Statistical analysis was performed to evaluate the impact of the 3D printed models on surgery-related characteristics.
Results: The 3D-printed models accurately depicted anatomical structures, particularly the positions and adjacent relationships of essential vessels, including the superior mesenteric artery (SMA), superior mesenteric vein (SMV), GTH and related arterial/venous branches. The operation time was significantly lower in the 3D printing group (198.6 ± 8.8 min in 3D printing group vs. 230.7 ± 47.5 min in control group, P = 0.025).
Conclusions: In conclusion, this study represents a novel vascular 3D printed modelfor surgical planning and intraoperative navigation in laparoscopic right hemicolectomy. It underscores the potential clinical applications of 3D printing in this context. Preoperative identification of vascular anomalies and precise intraoperative navigation can feasibly reduce surgical difficulty and enhance safety.