{"title":"Transcriptome and nutritional composition analysis of stacked transgenic maize with insect resistance and herbicide tolerance.","authors":"Xiaoxing Yu, Hongyu Gao, Pengfei Wang","doi":"10.1080/21645698.2025.2472451","DOIUrl":null,"url":null,"abstract":"<p><p>The safety assessment of stacked transgenic crops is essential for their commercial cultivation. A crucial element of safety assessment is the nutritional evaluation of transgenic crops. Currently, profiling methods like transcriptome are employed as supplemental analytical tools to find the unintended effects of transgenic crops. In this study, stacked transgenic maize ZDRF8×nCX-1 was produced by crossing of two transgenic maize events ZDRF8 and nCX-1. This stacked transgenic maize expresses five genes: <i>cry1Ab</i>, <i>cry2Ab</i> and <i>g10evo-epsps</i> (from ZDRF8), as well as <i>cp4 epsps</i> and <i>P450-N-Z1</i> (from nCX-1). Molecular analysis showed that the insertion sites of target genes were not changed during stack breeding, and the target genes are effectively expressed at both RNA and protein levels in ZDRF8×nCX-1. Target trait analysis showed that ZDRF8×nCX-1 exhibits tolerant to glyphosate, flazasulfuron and MCPA, and is resistant to damage by corn borers. Transcriptome analysis revealed that gene-stacked maize ZDRF8×nCX-1 did not significantly alter transcriptome profiles compared to the transgenic maize events ZDRF8 and nCX-1. Nutritional composition analysis showed that the grain profile of ZDRF8×nCX-1 was substantially equivalent to that of the non-transgenic counterpart. These results suggest that hybrid stacking does not cause significantly unintended effects beyond providing the intended beneficial traits.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"16 1","pages":"216-234"},"PeriodicalIF":4.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21645698.2025.2472451","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The safety assessment of stacked transgenic crops is essential for their commercial cultivation. A crucial element of safety assessment is the nutritional evaluation of transgenic crops. Currently, profiling methods like transcriptome are employed as supplemental analytical tools to find the unintended effects of transgenic crops. In this study, stacked transgenic maize ZDRF8×nCX-1 was produced by crossing of two transgenic maize events ZDRF8 and nCX-1. This stacked transgenic maize expresses five genes: cry1Ab, cry2Ab and g10evo-epsps (from ZDRF8), as well as cp4 epsps and P450-N-Z1 (from nCX-1). Molecular analysis showed that the insertion sites of target genes were not changed during stack breeding, and the target genes are effectively expressed at both RNA and protein levels in ZDRF8×nCX-1. Target trait analysis showed that ZDRF8×nCX-1 exhibits tolerant to glyphosate, flazasulfuron and MCPA, and is resistant to damage by corn borers. Transcriptome analysis revealed that gene-stacked maize ZDRF8×nCX-1 did not significantly alter transcriptome profiles compared to the transgenic maize events ZDRF8 and nCX-1. Nutritional composition analysis showed that the grain profile of ZDRF8×nCX-1 was substantially equivalent to that of the non-transgenic counterpart. These results suggest that hybrid stacking does not cause significantly unintended effects beyond providing the intended beneficial traits.
期刊介绍:
GM Crops & Food - Biotechnology in Agriculture and the Food Chain aims to publish high quality research papers, reviews, and commentaries on a wide range of topics involving genetically modified (GM) crops in agriculture and genetically modified food. The journal provides a platform for research papers addressing fundamental questions in the development, testing, and application of transgenic crops. The journal further covers topics relating to socio-economic issues, commercialization, trade and societal issues. GM Crops & Food aims to provide an international forum on all issues related to GM crops, especially toward meaningful communication between scientists and policy-makers.
GM Crops & Food will publish relevant and high-impact original research with a special focus on novelty-driven studies with the potential for application. The journal also publishes authoritative review articles on current research and policy initiatives, and commentary on broad perspectives regarding genetically modified crops. The journal serves a wide readership including scientists, breeders, and policy-makers, as well as a wider community of readers (educators, policy makers, scholars, science writers and students) interested in agriculture, medicine, biotechnology, investment, and technology transfer.
Topics covered include, but are not limited to:
• Production and analysis of transgenic crops
• Gene insertion studies
• Gene silencing
• Factors affecting gene expression
• Post-translational analysis
• Molecular farming
• Field trial analysis
• Commercialization of modified crops
• Safety and regulatory affairs
BIOLOGICAL SCIENCE AND TECHNOLOGY
• Biofuels
• Data from field trials
• Development of transformation technology
• Elimination of pollutants (Bioremediation)
• Gene silencing mechanisms
• Genome Editing
• Herbicide resistance
• Molecular farming
• Pest resistance
• Plant reproduction (e.g., male sterility, hybrid breeding, apomixis)
• Plants with altered composition
• Tolerance to abiotic stress
• Transgenesis in agriculture
• Biofortification and nutrients improvement
• Genomic, proteomic and bioinformatics methods used for developing GM cops
ECONOMIC, POLITICAL AND SOCIAL ISSUES
• Commercialization
• Consumer attitudes
• International bodies
• National and local government policies
• Public perception, intellectual property, education, (bio)ethical issues
• Regulation, environmental impact and containment
• Socio-economic impact
• Food safety and security
• Risk assessments