{"title":"Activation of Nrf2 pathway by 4-Octyl itaconate enhances donor lung function in cold preservation settings.","authors":"Xinliang Gao, Mingbo Tang, Jialin Li, Jianzun Ma, Zhengrui Liu, Wei Liu","doi":"10.1186/s12931-025-03151-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Lung transplantation is the primary treatment for end-stage lung diseases. However, ischemia-reperfusion injury (IRI) significantly impacts transplant outcomes. 4-Octyl itaconate (4-OI) has shown potential in mitigating organ IRI, although its effects in lung transplantation require further exploration.</p><p><strong>Methods: </strong>BEAS-2B cells were used to model transplantation, assessing the effects of 4-OI through viability, apoptosis, and ROS assays. qRT-PCR analyzed cytokine transcription post-cold ischemia/reperfusion (CI/R). RNA sequencing and Gene Ontology analysis elucidated 4-OI's mechanisms of action, confirmed by Western blotting. ALI-airway and lung transplantation organoid models evaluated improvements in bronchial epithelial morphology and function due to 4-OI. ELISA measured IL-6 and IL-8 levels. Rat models of extended cold preservation and non-heart-beating transplantation assessed 4-OI's impact on lung function, injury, and inflammation.</p><p><strong>Results: </strong>Our findings indicate that 4-OI (100 µM) during cold preservation effectively maintained cell viability, decreased apoptosis, and reduced ROS production in BEAS-2B cells under CI/R conditions. It also downregulated pro-inflammatory cytokine transcription, including IL1B, IL6, and TNF. Inhibition of Nrf2 partially reversed these protective effects. In cold preservation solutions, 4-OI upregulated Nrf2 target genes such as NQO1, HMOX1, and SLC7A11. In ALI airway models, 4-OI enhanced bronchial epithelial barrier integrity and ciliary beat function after CI/R. In rat models, 4-OI administration improved lung function and reduced pulmonary edema, tissue injury, apoptosis, and systemic inflammation following extended cold preservation or non-heart-beating lung transplantation.</p><p><strong>Conclusions: </strong>Incorporating 4-OI into cold preservation solutions appears promising for alleviating CI/R-induced bronchial epithelial injury and enhancing lung transplant outcomes via Nrf2 pathway activation.</p>","PeriodicalId":49131,"journal":{"name":"Respiratory Research","volume":"26 1","pages":"69"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11869626/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12931-025-03151-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Lung transplantation is the primary treatment for end-stage lung diseases. However, ischemia-reperfusion injury (IRI) significantly impacts transplant outcomes. 4-Octyl itaconate (4-OI) has shown potential in mitigating organ IRI, although its effects in lung transplantation require further exploration.
Methods: BEAS-2B cells were used to model transplantation, assessing the effects of 4-OI through viability, apoptosis, and ROS assays. qRT-PCR analyzed cytokine transcription post-cold ischemia/reperfusion (CI/R). RNA sequencing and Gene Ontology analysis elucidated 4-OI's mechanisms of action, confirmed by Western blotting. ALI-airway and lung transplantation organoid models evaluated improvements in bronchial epithelial morphology and function due to 4-OI. ELISA measured IL-6 and IL-8 levels. Rat models of extended cold preservation and non-heart-beating transplantation assessed 4-OI's impact on lung function, injury, and inflammation.
Results: Our findings indicate that 4-OI (100 µM) during cold preservation effectively maintained cell viability, decreased apoptosis, and reduced ROS production in BEAS-2B cells under CI/R conditions. It also downregulated pro-inflammatory cytokine transcription, including IL1B, IL6, and TNF. Inhibition of Nrf2 partially reversed these protective effects. In cold preservation solutions, 4-OI upregulated Nrf2 target genes such as NQO1, HMOX1, and SLC7A11. In ALI airway models, 4-OI enhanced bronchial epithelial barrier integrity and ciliary beat function after CI/R. In rat models, 4-OI administration improved lung function and reduced pulmonary edema, tissue injury, apoptosis, and systemic inflammation following extended cold preservation or non-heart-beating lung transplantation.
Conclusions: Incorporating 4-OI into cold preservation solutions appears promising for alleviating CI/R-induced bronchial epithelial injury and enhancing lung transplant outcomes via Nrf2 pathway activation.
期刊介绍:
Respiratory Research publishes high-quality clinical and basic research, review and commentary articles on all aspects of respiratory medicine and related diseases.
As the leading fully open access journal in the field, Respiratory Research provides an essential resource for pulmonologists, allergists, immunologists and other physicians, researchers, healthcare workers and medical students with worldwide dissemination of articles resulting in high visibility and generating international discussion.
Topics of specific interest include asthma, chronic obstructive pulmonary disease, cystic fibrosis, genetics, infectious diseases, interstitial lung diseases, lung development, lung tumors, occupational and environmental factors, pulmonary circulation, pulmonary pharmacology and therapeutics, respiratory immunology, respiratory physiology, and sleep-related respiratory problems.