{"title":"Effects of maternal restraint stress on offspring intestinal microbiota and adipogenesis: insights from in vivo and in vitro studies.","authors":"Takako Kondo, Yuta Tsunematsu, Yu Aoki, Noriyuki Miyoshi, Mitsuo Iinuma, Kumiko Yamada","doi":"10.1017/S2040174425000042","DOIUrl":null,"url":null,"abstract":"<p><p>The maternal restraint stress animal model is based on a long-term stress paradigm administered to pregnant maternal animals, and these offspring have been shown to exhibit a variety of biochemical defects including obesity. This study aimed to investigate whether maternal restraint stress affects obesity-associated changes in offspring intestinal microbiota and the adipogenic differentiation of mesenchymal stem cells (MSCs).Pregnant mice were subjected to restraint stress three times daily from gestational Day12 to delivery. Changes in the composition of the intestinal microbiota of mothers (during pregnancy and lactation) and their lactating offspring exposed to maternal restraint stress were analyzed using next-generation sequencing. Maternal stress altered the maternal microbiota, with reduced Bacteroidetes and increased Firmicutes. While similar trends were observed in offspring, these changes were not statistically significant. However, maternal stress notably reduced microbial diversity in the offspring's intestinal microbiota. Bone marrow-derived MSCs from offspring at weaning were analyzed for adipogenic transcription factors and hormone receptor expression using quantitative PCR. Maternal stress enhanced the adipogenic phenotype of offspring MSCs, as evidenced by increased expression of adipogenic markers (<i>PPARγ</i>, leptin receptor) and a reduced osteogenic phenotype. <i>In vitro</i> induction further confirmed the higher adipocyte differentiation potential in stressed offspring MSCs compared to controls.Our results revealed that maternal restraint stress altered the maternal intestinal microbiota, leading to reduced microbial diversity in offspring, predisposing their MSCs toward an adipocyte phenotype. These finding suggest that modulating the intestinal microbiota of stressed pregnant women may improve the susceptibility to obesity in their children.</p>","PeriodicalId":49167,"journal":{"name":"Journal of Developmental Origins of Health and Disease","volume":"16 ","pages":"e14"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Developmental Origins of Health and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S2040174425000042","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
The maternal restraint stress animal model is based on a long-term stress paradigm administered to pregnant maternal animals, and these offspring have been shown to exhibit a variety of biochemical defects including obesity. This study aimed to investigate whether maternal restraint stress affects obesity-associated changes in offspring intestinal microbiota and the adipogenic differentiation of mesenchymal stem cells (MSCs).Pregnant mice were subjected to restraint stress three times daily from gestational Day12 to delivery. Changes in the composition of the intestinal microbiota of mothers (during pregnancy and lactation) and their lactating offspring exposed to maternal restraint stress were analyzed using next-generation sequencing. Maternal stress altered the maternal microbiota, with reduced Bacteroidetes and increased Firmicutes. While similar trends were observed in offspring, these changes were not statistically significant. However, maternal stress notably reduced microbial diversity in the offspring's intestinal microbiota. Bone marrow-derived MSCs from offspring at weaning were analyzed for adipogenic transcription factors and hormone receptor expression using quantitative PCR. Maternal stress enhanced the adipogenic phenotype of offspring MSCs, as evidenced by increased expression of adipogenic markers (PPARγ, leptin receptor) and a reduced osteogenic phenotype. In vitro induction further confirmed the higher adipocyte differentiation potential in stressed offspring MSCs compared to controls.Our results revealed that maternal restraint stress altered the maternal intestinal microbiota, leading to reduced microbial diversity in offspring, predisposing their MSCs toward an adipocyte phenotype. These finding suggest that modulating the intestinal microbiota of stressed pregnant women may improve the susceptibility to obesity in their children.
期刊介绍:
JDOHaD publishes leading research in the field of Developmental Origins of Health and Disease (DOHaD). The Journal focuses on the environment during early pre-natal and post-natal animal and human development, interactions between environmental and genetic factors, including environmental toxicants, and their influence on health and disease risk throughout the lifespan. JDOHaD publishes work on developmental programming, fetal and neonatal biology and physiology, early life nutrition, especially during the first 1,000 days of life, human ecology and evolution and Gene-Environment Interactions.
JDOHaD also accepts manuscripts that address the social determinants or education of health and disease risk as they relate to the early life period, as well as the economic and health care costs of a poor start to life. Accordingly, JDOHaD is multi-disciplinary, with contributions from basic scientists working in the fields of physiology, biochemistry and nutrition, endocrinology and metabolism, developmental biology, molecular biology/ epigenetics, human biology/ anthropology, and evolutionary developmental biology. Moreover clinicians, nutritionists, epidemiologists, social scientists, economists, public health specialists and policy makers are very welcome to submit manuscripts.
The journal includes original research articles, short communications and reviews, and has regular themed issues, with guest editors; it is also a platform for conference/workshop reports, and for opinion, comment and interaction.