A new cure model accounting for longitudinal data and flexible patterns of hazard ratios over time.

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES
Can Xie, Xuelin Huang, Ruosha Li, Yu Shen, Nicholas J Short, Kapil N Bhalla
{"title":"A new cure model accounting for longitudinal data and flexible patterns of hazard ratios over time.","authors":"Can Xie, Xuelin Huang, Ruosha Li, Yu Shen, Nicholas J Short, Kapil N Bhalla","doi":"10.1177/09622802251320793","DOIUrl":null,"url":null,"abstract":"<p><p>With the advancement of medical treatments, many historically incurable diseases have become curable. An accurate estimation of the cure rates is of great interest. When there are no clear biomarker indicators for cure, the estimation of cure rate is intertwined with and influenced by the specification of hazard functions for uncured patients. Consequently, the commonly used proportional hazards (PH) assumption, when violated, may lead to biased cure rate estimation. Meanwhile, longitudinal biomarker measurements for individual patients are usually available. To accommodate non-PH functions and incorporate individual longitudinal biomarker trajectories, we propose a new joint model for cure, survival, and longitudinal data, with hazard ratios between different covariate subgroups flexibly varying over time. The proposed joint model has individual random effects shared between its longitudinal and cure-survival submodels. The regression parameters are estimated by maximization of the non-parametric likelihood via the Monte Carlo expectation-maximization algorithm. The standard error estimation applies a jackknife resampling method. In simulation studies, we consider crossing and non-crossing survival curves, and the proposed model provides unbiased estimates for the cure rates. Our proposed joint cure model is illustrated via a study of chronic myeloid leukemia.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802251320793"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802251320793","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

With the advancement of medical treatments, many historically incurable diseases have become curable. An accurate estimation of the cure rates is of great interest. When there are no clear biomarker indicators for cure, the estimation of cure rate is intertwined with and influenced by the specification of hazard functions for uncured patients. Consequently, the commonly used proportional hazards (PH) assumption, when violated, may lead to biased cure rate estimation. Meanwhile, longitudinal biomarker measurements for individual patients are usually available. To accommodate non-PH functions and incorporate individual longitudinal biomarker trajectories, we propose a new joint model for cure, survival, and longitudinal data, with hazard ratios between different covariate subgroups flexibly varying over time. The proposed joint model has individual random effects shared between its longitudinal and cure-survival submodels. The regression parameters are estimated by maximization of the non-parametric likelihood via the Monte Carlo expectation-maximization algorithm. The standard error estimation applies a jackknife resampling method. In simulation studies, we consider crossing and non-crossing survival curves, and the proposed model provides unbiased estimates for the cure rates. Our proposed joint cure model is illustrated via a study of chronic myeloid leukemia.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信