Kudakwashe Nyambo, Vivette Soko, Kudzanai Ian Tapfuma, Bongani Motaung, Francis Adu-Amankwaah, Lauren Julius, Ashwil Klein, Marshall Keyster, Lucinda Baatjies, Liezel Smith, Krishna Kuben Govender, Mkhuseli Ngxande, Andre G Loxton, Vuyo Mavumengwana
{"title":"Repurposing of apoptotic inducer drugs against Mycobacterium tuberculosis.","authors":"Kudakwashe Nyambo, Vivette Soko, Kudzanai Ian Tapfuma, Bongani Motaung, Francis Adu-Amankwaah, Lauren Julius, Ashwil Klein, Marshall Keyster, Lucinda Baatjies, Liezel Smith, Krishna Kuben Govender, Mkhuseli Ngxande, Andre G Loxton, Vuyo Mavumengwana","doi":"10.1038/s41598-025-91096-8","DOIUrl":null,"url":null,"abstract":"<p><p>Computational approaches complement traditional in-vitro or in-vivo assays, significantly accelerating the drug discovery process by increasing the probability of identifying promising lead compounds. In this study, the apoptotic compounds were assessed for antimycobacterial activity and immunomodulatory potential in infected THP-1 macrophage cells. The antimycobacterial activity of the apoptotic compounds was evaluated using the minimum inhibitory concentration (MIC) assay. The immunomodulatory potential of the apoptotic compounds was determined on mycobacterial-infected THP-1 and non-infected THP-1 macrophage cells. The potential binding dynamics of the compounds against InhA were predicted using molecular docking, molecular dynamics, and MM-GBSA binding free energies. The in-vitro MIC assay showed that cepharanthine (CEP) had the highest antimycobacterial activity against Mycobacterium smegmatis mc<sup>2</sup>155 and Mycobacterium tuberculosis H37Rv, with MICs of 3.1 and 1.5 µg/mL, respectively, followed by CP-31398 dihydrochloride hydrate (DIH) (MICs = 6.2 and 3.1 µg/mL, respectively), marinopyrrole A (MAR) (MICs = 25 and 12.5 µg/mL, respectively), and nutlin-3a (NUT) (MICs = 50 and 25 µg/mL, respectively). MICs for the rest of the drugs were > 200 µg/mL against both M. smegmatis mc<sup>2</sup>155 and M. tuberculosis H37Rv. Furthermore, the growth of M. smegmatis mc<sup>2</sup>155 in infected THP-1 macrophage cells treated with DIH, CEP, carboxyatractyloside potassium salt (CAR), and NUT was inhibited by the mentioned drugs. Cytokine profiling showed that DIH optimally regulated the secretion of IL-1β and TNF-α which potentially enhanced the clearance of the intracellular pathogen. Molecular dynamics simulations showed that NUT, MAR, 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), and BV02 strongly bind to InhA. However, 17-AAG and BV02 did not show significant activity in-vitro. This study highlights the importance of probing already existing chemical scaffolds as a starting point for discovery of therapeutic agents against M. tuberculosis H37Rv using both pathogen and host directed approaches. The integration of molecular dynamics simulations provides valuable insights into potential scaffold modifications to enhance the affinity.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"7109"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868625/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-91096-8","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Computational approaches complement traditional in-vitro or in-vivo assays, significantly accelerating the drug discovery process by increasing the probability of identifying promising lead compounds. In this study, the apoptotic compounds were assessed for antimycobacterial activity and immunomodulatory potential in infected THP-1 macrophage cells. The antimycobacterial activity of the apoptotic compounds was evaluated using the minimum inhibitory concentration (MIC) assay. The immunomodulatory potential of the apoptotic compounds was determined on mycobacterial-infected THP-1 and non-infected THP-1 macrophage cells. The potential binding dynamics of the compounds against InhA were predicted using molecular docking, molecular dynamics, and MM-GBSA binding free energies. The in-vitro MIC assay showed that cepharanthine (CEP) had the highest antimycobacterial activity against Mycobacterium smegmatis mc2155 and Mycobacterium tuberculosis H37Rv, with MICs of 3.1 and 1.5 µg/mL, respectively, followed by CP-31398 dihydrochloride hydrate (DIH) (MICs = 6.2 and 3.1 µg/mL, respectively), marinopyrrole A (MAR) (MICs = 25 and 12.5 µg/mL, respectively), and nutlin-3a (NUT) (MICs = 50 and 25 µg/mL, respectively). MICs for the rest of the drugs were > 200 µg/mL against both M. smegmatis mc2155 and M. tuberculosis H37Rv. Furthermore, the growth of M. smegmatis mc2155 in infected THP-1 macrophage cells treated with DIH, CEP, carboxyatractyloside potassium salt (CAR), and NUT was inhibited by the mentioned drugs. Cytokine profiling showed that DIH optimally regulated the secretion of IL-1β and TNF-α which potentially enhanced the clearance of the intracellular pathogen. Molecular dynamics simulations showed that NUT, MAR, 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), and BV02 strongly bind to InhA. However, 17-AAG and BV02 did not show significant activity in-vitro. This study highlights the importance of probing already existing chemical scaffolds as a starting point for discovery of therapeutic agents against M. tuberculosis H37Rv using both pathogen and host directed approaches. The integration of molecular dynamics simulations provides valuable insights into potential scaffold modifications to enhance the affinity.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.