{"title":"Pulsed field ablation in medicine: irreversible electroporation and electropermeabilization theory and applications.","authors":"Edward J Jacobs, Boris Rubinsky, Rafael V Davalos","doi":"10.2478/raon-2025-0011","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Focal ablation techniques are integral in the surgical intervention of diseased tissue, where it is necessary to minimize damage to the surrounding parenchyma and critical structures. Irreversible electroporation (IRE) and high-frequency IRE (H-FIRE), colloquially called pulsed-field ablation (PFA), utilize high-amplitude, low-energy pulsed electric fields (PEFs) to nonthermally ablate soft tissue. PEFs induce cell death through permeabilization of the cellular membrane, leading to loss of homeostasis. The unique nonthermal nature of PFA allows for selective cell death while minimally affecting surrounding proteinaceous structures, permitting treatment near sensitive anatomy where thermal ablation or surgical resection is contraindicated. Further, PFA is being used to treat tissue when tumor margins are not expected after surgical resection, termed margin accentuation. This review explores both the theoretical foundations of PFA, detailing how PEFs induce cell membrane destabilization and selective tissue ablation, the outcomes following treatment, and its clinical implications across oncology and cardiology.</p><p><strong>Conclusions: </strong>Clinical experience is still progressing, but reports have demonstrated that PFA reduces complications often seen with thermal ablation techniques. Mounting oncology data also support that PFA produces a robust immune response that may prevent local recurrences and attenuate metastatic disease. Despite promising outcomes, challenges such as optimizing field delivery and addressing variations in tissue response require further investigation. Future directions include refining PFA protocols and expanding its application to other therapeutic areas like benign tissue hyperplasia and chronic bronchitis.</p>","PeriodicalId":21034,"journal":{"name":"Radiology and Oncology","volume":"59 1","pages":"1-22"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11867574/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology and Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2478/raon-2025-0011","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Focal ablation techniques are integral in the surgical intervention of diseased tissue, where it is necessary to minimize damage to the surrounding parenchyma and critical structures. Irreversible electroporation (IRE) and high-frequency IRE (H-FIRE), colloquially called pulsed-field ablation (PFA), utilize high-amplitude, low-energy pulsed electric fields (PEFs) to nonthermally ablate soft tissue. PEFs induce cell death through permeabilization of the cellular membrane, leading to loss of homeostasis. The unique nonthermal nature of PFA allows for selective cell death while minimally affecting surrounding proteinaceous structures, permitting treatment near sensitive anatomy where thermal ablation or surgical resection is contraindicated. Further, PFA is being used to treat tissue when tumor margins are not expected after surgical resection, termed margin accentuation. This review explores both the theoretical foundations of PFA, detailing how PEFs induce cell membrane destabilization and selective tissue ablation, the outcomes following treatment, and its clinical implications across oncology and cardiology.
Conclusions: Clinical experience is still progressing, but reports have demonstrated that PFA reduces complications often seen with thermal ablation techniques. Mounting oncology data also support that PFA produces a robust immune response that may prevent local recurrences and attenuate metastatic disease. Despite promising outcomes, challenges such as optimizing field delivery and addressing variations in tissue response require further investigation. Future directions include refining PFA protocols and expanding its application to other therapeutic areas like benign tissue hyperplasia and chronic bronchitis.
期刊介绍:
Radiology and Oncology is a multidisciplinary journal devoted to the publishing original and high quality scientific papers and review articles, pertinent to diagnostic and interventional radiology, computerized tomography, magnetic resonance, ultrasound, nuclear medicine, radiotherapy, clinical and experimental oncology, radiobiology, medical physics and radiation protection. Therefore, the scope of the journal is to cover beside radiology the diagnostic and therapeutic aspects in oncology, which distinguishes it from other journals in the field.