Large-scale pyrodiversity is not needed to beget ant diversity in an Australian tropical savanna.

IF 2.3 2区 环境科学与生态学 Q2 ECOLOGY
François Brassard, Brett P Murphy, Simon Ferrier, Alan N Andersen
{"title":"Large-scale pyrodiversity is not needed to beget ant diversity in an Australian tropical savanna.","authors":"François Brassard, Brett P Murphy, Simon Ferrier, Alan N Andersen","doi":"10.1007/s00442-025-05683-7","DOIUrl":null,"url":null,"abstract":"<p><p>The hypothesis that pyrodiversity begets biodiversity is foundational to conservation management in fire-prone ecosystems and has received extensive research attention. However, empirical evidence for the hypothesis remains ambivalent. Moreover, few studies directly assess the key question of how much pyrodiversity is needed to conserve all species within a community. A novel way of addressing this is to use the biodiversity-maximisation approach developed for reserve selection as part of strategic conservation planning. We apply this approach to an ant dataset from a long-term fire experiment in northern Australia to establish how many of the six experimental fire treatments are required to represent all local ant diversity. We identified the treatment combinations required to maximise species richness and geometric mean abundance. We repeated this for six fire-activity classes based on cumulative fire intensity experienced by plots over the course of the experiment. We found that a very limited number of fire treatments or fire activity classes were needed to represent all of the highly diverse ant species and to maximise the geometric mean abundance of ants. We attribute this to the substantial small-scale heterogeneity of fire behaviour and vegetation structure within individual fire treatments. We conclude that high pyrodiversity at larger spatial scales is not required for sustaining ant biodiversity in our study system. We believe that a reserve selection approach is a powerful method for assessing how much pyrodiversity is needed to conserve biodiversity and recommend that it be applied to other taxa and other ecosystems.</p>","PeriodicalId":19473,"journal":{"name":"Oecologia","volume":"207 3","pages":"41"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11870973/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oecologia","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00442-025-05683-7","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The hypothesis that pyrodiversity begets biodiversity is foundational to conservation management in fire-prone ecosystems and has received extensive research attention. However, empirical evidence for the hypothesis remains ambivalent. Moreover, few studies directly assess the key question of how much pyrodiversity is needed to conserve all species within a community. A novel way of addressing this is to use the biodiversity-maximisation approach developed for reserve selection as part of strategic conservation planning. We apply this approach to an ant dataset from a long-term fire experiment in northern Australia to establish how many of the six experimental fire treatments are required to represent all local ant diversity. We identified the treatment combinations required to maximise species richness and geometric mean abundance. We repeated this for six fire-activity classes based on cumulative fire intensity experienced by plots over the course of the experiment. We found that a very limited number of fire treatments or fire activity classes were needed to represent all of the highly diverse ant species and to maximise the geometric mean abundance of ants. We attribute this to the substantial small-scale heterogeneity of fire behaviour and vegetation structure within individual fire treatments. We conclude that high pyrodiversity at larger spatial scales is not required for sustaining ant biodiversity in our study system. We believe that a reserve selection approach is a powerful method for assessing how much pyrodiversity is needed to conserve biodiversity and recommend that it be applied to other taxa and other ecosystems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Oecologia
Oecologia 环境科学-生态学
CiteScore
5.10
自引率
0.00%
发文量
192
审稿时长
5.3 months
期刊介绍: Oecologia publishes innovative ecological research of international interest. We seek reviews, advances in methodology, and original contributions, emphasizing the following areas: Population ecology, Plant-microbe-animal interactions, Ecosystem ecology, Community ecology, Global change ecology, Conservation ecology, Behavioral ecology and Physiological Ecology. In general, studies that are purely descriptive, mathematical, documentary, and/or natural history will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信