{"title":"SARS-CoV-2 infection primes cross-protective respiratory IgA in a MyD88- and MAVS-dependent manner.","authors":"Moe Kobayashi, Nene Kobayashi, Kyoka Deguchi, Seira Omori, Takeshi Ichinohe","doi":"10.1038/s41541-025-01095-z","DOIUrl":null,"url":null,"abstract":"<p><p>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is constantly evolving mutations in the Spike protein to evade humoral immunity. Respiratory tract antiviral IgA antibodies are superior to circulating IgG antibodies in preventing SARS-CoV-2 infection. However, the role of innate immune signals required for the induction of mucosal IgA against SARS-CoV-2 infection is unknown. Here we show that hamsters recovered from ancestral SARS-CoV-2 infection are cross-protected against heterologous SARS-CoV-2 alpha, gamma, delta, and omicron BA.1 variants. Intranasal vaccination with an inactivated whole virus vaccine completely protects hamsters against heterologous SARS-CoV-2 infection. In addition, we show that intranasal boost vaccination of mice recovered from SARS-CoV-2 infection with unadjuvanted Spike protein induces robust levels of respiratory anti-Spike IgA and protects the mice from a heterologous SARS-CoV-2 infection. Furthermore, our findings suggest that MyD88 and MAVS play a role in the induction of the memory IgA response following an intranasal booster with unadjuvanted Spike protein in mice recovered from the SARS-CoV-2 infection. These findings provide a useful basis for the development of cross-protective mucosal vaccines against heterologous SARS-CoV-2 infection.</p>","PeriodicalId":19335,"journal":{"name":"NPJ Vaccines","volume":"10 1","pages":"40"},"PeriodicalIF":6.9000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868564/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Vaccines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41541-025-01095-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is constantly evolving mutations in the Spike protein to evade humoral immunity. Respiratory tract antiviral IgA antibodies are superior to circulating IgG antibodies in preventing SARS-CoV-2 infection. However, the role of innate immune signals required for the induction of mucosal IgA against SARS-CoV-2 infection is unknown. Here we show that hamsters recovered from ancestral SARS-CoV-2 infection are cross-protected against heterologous SARS-CoV-2 alpha, gamma, delta, and omicron BA.1 variants. Intranasal vaccination with an inactivated whole virus vaccine completely protects hamsters against heterologous SARS-CoV-2 infection. In addition, we show that intranasal boost vaccination of mice recovered from SARS-CoV-2 infection with unadjuvanted Spike protein induces robust levels of respiratory anti-Spike IgA and protects the mice from a heterologous SARS-CoV-2 infection. Furthermore, our findings suggest that MyD88 and MAVS play a role in the induction of the memory IgA response following an intranasal booster with unadjuvanted Spike protein in mice recovered from the SARS-CoV-2 infection. These findings provide a useful basis for the development of cross-protective mucosal vaccines against heterologous SARS-CoV-2 infection.
NPJ VaccinesImmunology and Microbiology-Immunology
CiteScore
11.90
自引率
4.30%
发文量
146
审稿时长
11 weeks
期刊介绍:
Online-only and open access, npj Vaccines is dedicated to highlighting the most important scientific advances in vaccine research and development.