So Yoon Kim, Shinyoung Woo, Seung-Woo Lee, Eui-Man Jung, Eun-Hee Lee
{"title":"Dose-Dependent Responses of <i>Escherichia coli</i> and <i>Acinetobacter</i> sp. to Micron-Sized Polystyrene Microplastics.","authors":"So Yoon Kim, Shinyoung Woo, Seung-Woo Lee, Eui-Man Jung, Eun-Hee Lee","doi":"10.4014/jmb.2410.10023","DOIUrl":null,"url":null,"abstract":"<p><p>Microplastics are ubiquitous environmental contaminants that can cause significant ecological damage because of their resistance to biodegradation. We evaluated the toxic effects of 1,040 nm polystyrene (PS) microplastics in two representative bacteria, <i>Escherichia coli</i> and <i>Acinetobacter</i> sp. In particular, we examined the effects of these PS microplastics on bacterial growth and viability, parameters related to oxidative stress (reactive oxygen species [ROS], lactate dehydrogenase [LDH], and malondialdehyde [MDA]), membrane integrity, and biofilm formation. An increasing concentration of PS microplastics decreased cell growth and viability in both species. These PS microplastics also decreased cell membrane integrity and increased biofilm formation in both species. Although both species exhibited adverse overall effects from PS microplastics, they had significant differences in specific indicators of oxidative stress. Correlation analysis demonstrated different correlations among measured experimental parameters (cell viability, ROS, LDH, MDA, and biofilm formation) in these two species. These results suggest that 1,040 nm PS microplastics decreased cell growth and viability by different mechanisms in <i>E. coli</i> and <i>Acinetobacter</i> sp.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"35 ","pages":"e2410023"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11896800/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2410.10023","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastics are ubiquitous environmental contaminants that can cause significant ecological damage because of their resistance to biodegradation. We evaluated the toxic effects of 1,040 nm polystyrene (PS) microplastics in two representative bacteria, Escherichia coli and Acinetobacter sp. In particular, we examined the effects of these PS microplastics on bacterial growth and viability, parameters related to oxidative stress (reactive oxygen species [ROS], lactate dehydrogenase [LDH], and malondialdehyde [MDA]), membrane integrity, and biofilm formation. An increasing concentration of PS microplastics decreased cell growth and viability in both species. These PS microplastics also decreased cell membrane integrity and increased biofilm formation in both species. Although both species exhibited adverse overall effects from PS microplastics, they had significant differences in specific indicators of oxidative stress. Correlation analysis demonstrated different correlations among measured experimental parameters (cell viability, ROS, LDH, MDA, and biofilm formation) in these two species. These results suggest that 1,040 nm PS microplastics decreased cell growth and viability by different mechanisms in E. coli and Acinetobacter sp.
期刊介绍:
The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.