Detection and selection of dye-degrading bacteria from surface waters with different degrees of contamination.

IF 2.5 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Journal of water and health Pub Date : 2025-02-01 Epub Date: 2025-01-27 DOI:10.2166/wh.2025.264
Luciana Grifes Paisan, Rodrigo Andrés Carballo, Mariana Papalia, María Susana Fortunato, Marcela Radice, Sonia Edith Korol, Alfredo Gallego
{"title":"Detection and selection of dye-degrading bacteria from surface waters with different degrees of contamination.","authors":"Luciana Grifes Paisan, Rodrigo Andrés Carballo, Mariana Papalia, María Susana Fortunato, Marcela Radice, Sonia Edith Korol, Alfredo Gallego","doi":"10.2166/wh.2025.264","DOIUrl":null,"url":null,"abstract":"<p><p>Biodegradability and resistance from indigenous bacterial communities to dyes were tested using samples from both polluted and unpolluted surface waters in Buenos Aires. Five dyes were selected for the study: Acid Black 210, Direct Orange 39, Malachite Green, Gentian Violet, and Alizarin Red. Water quality was assessed by measuring chemical oxygen demand, biochemical oxygen demand, and both <i>Escherichia coli</i> and enterococci counts. Biodegradability was tested using a respirometric method, while resistance was assessed by determining the minimum inhibitory concentration (MIC). No bacterial strains capable of degrading the dyes as the sole carbon source were isolated from the respirometric tests. However, from the MIC tests, 28 strains capable of dye discolouration were identified, using nutrient broth as a supplement. Two of them were able to degrade Malachite Green and Acid Black 210 at a concentration of 50 mg L<sup>-1</sup> in less than 24 h and with an efficiency greater than 87%. These strains were identified as <i>Aeromonas</i> sp. and <i>Shewanella</i> sp. through MALDI-TOF/MS and 16S rRNA gene sequencing. The determination of biodegradability and resistance can be used to enhance the characterization of watercourses. Furthermore, this methodology provides a means to isolate biodegrading bacteria that could be applied in effluent treatment processes.</p>","PeriodicalId":17436,"journal":{"name":"Journal of water and health","volume":"23 2","pages":"140-154"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of water and health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wh.2025.264","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Biodegradability and resistance from indigenous bacterial communities to dyes were tested using samples from both polluted and unpolluted surface waters in Buenos Aires. Five dyes were selected for the study: Acid Black 210, Direct Orange 39, Malachite Green, Gentian Violet, and Alizarin Red. Water quality was assessed by measuring chemical oxygen demand, biochemical oxygen demand, and both Escherichia coli and enterococci counts. Biodegradability was tested using a respirometric method, while resistance was assessed by determining the minimum inhibitory concentration (MIC). No bacterial strains capable of degrading the dyes as the sole carbon source were isolated from the respirometric tests. However, from the MIC tests, 28 strains capable of dye discolouration were identified, using nutrient broth as a supplement. Two of them were able to degrade Malachite Green and Acid Black 210 at a concentration of 50 mg L-1 in less than 24 h and with an efficiency greater than 87%. These strains were identified as Aeromonas sp. and Shewanella sp. through MALDI-TOF/MS and 16S rRNA gene sequencing. The determination of biodegradability and resistance can be used to enhance the characterization of watercourses. Furthermore, this methodology provides a means to isolate biodegrading bacteria that could be applied in effluent treatment processes.

从不同污染程度的地表水中检测和筛选染料降解菌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of water and health
Journal of water and health 环境科学-环境科学
CiteScore
3.60
自引率
8.70%
发文量
110
审稿时长
18-36 weeks
期刊介绍: Journal of Water and Health is a peer-reviewed journal devoted to the dissemination of information on the health implications and control of waterborne microorganisms and chemical substances in the broadest sense for developing and developed countries worldwide. This is to include microbial toxins, chemical quality and the aesthetic qualities of water.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信