A novel approach for estimating postmortem intervals under varying temperature conditions using pathology images and artificial intelligence models.

IF 2.2 3区 医学 Q1 MEDICINE, LEGAL
Xinggong Liang, Mingyan Deng, Zhengyang Zhu, Wanqing Zhang, Yuqian Li, Jianliang Luo, Han Wang, Shuo Wu, Run Chen, Gongji Wang, Hao Wu, Chen Shen, Gengwang Hu, Kai Zhang, Qinru Sun, Zhenyuan Wang
{"title":"A novel approach for estimating postmortem intervals under varying temperature conditions using pathology images and artificial intelligence models.","authors":"Xinggong Liang, Mingyan Deng, Zhengyang Zhu, Wanqing Zhang, Yuqian Li, Jianliang Luo, Han Wang, Shuo Wu, Run Chen, Gongji Wang, Hao Wu, Chen Shen, Gengwang Hu, Kai Zhang, Qinru Sun, Zhenyuan Wang","doi":"10.1007/s00414-025-03447-9","DOIUrl":null,"url":null,"abstract":"<p><p>Estimating the postmortem interval (PMI) is a critical yet complex task in forensic investigations, with accurate and timely determination playing a key role in case resolution and legal outcomes. Traditional methods often suffer from environmental variability and subjective biases, emphasizing the need for more reliable and objective approaches. In this study, we present a novel predictive model for PMI estimation, introduced here for the first time, that leverages pathological tissue images and artificial intelligence (AI). The model is designed to perform under three temperature conditions: 25 °C, 37 °C, and 4 °C. Using a ResNet50 neural network, patch-level images were analyzed to extract deep learning-derived features, which were integrated with machine learning algorithms for whole slide image (WSI) classification. The model achieved strong performance, with micro and macro AUC values of at least 0.949 at the patch-level and 0.800 at the WSI-level in both training and testing sets. In external validation, micro and macro AUC values at the patch-level exceeded 0.960. These results highlight the potential of AI to improve the accuracy and efficiency of PMI estimation. As AI technology continues to advance, this approach holds promise for enhancing forensic investigations and supporting more precise case resolutions.</p>","PeriodicalId":14071,"journal":{"name":"International Journal of Legal Medicine","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Legal Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00414-025-03447-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0

Abstract

Estimating the postmortem interval (PMI) is a critical yet complex task in forensic investigations, with accurate and timely determination playing a key role in case resolution and legal outcomes. Traditional methods often suffer from environmental variability and subjective biases, emphasizing the need for more reliable and objective approaches. In this study, we present a novel predictive model for PMI estimation, introduced here for the first time, that leverages pathological tissue images and artificial intelligence (AI). The model is designed to perform under three temperature conditions: 25 °C, 37 °C, and 4 °C. Using a ResNet50 neural network, patch-level images were analyzed to extract deep learning-derived features, which were integrated with machine learning algorithms for whole slide image (WSI) classification. The model achieved strong performance, with micro and macro AUC values of at least 0.949 at the patch-level and 0.800 at the WSI-level in both training and testing sets. In external validation, micro and macro AUC values at the patch-level exceeded 0.960. These results highlight the potential of AI to improve the accuracy and efficiency of PMI estimation. As AI technology continues to advance, this approach holds promise for enhancing forensic investigations and supporting more precise case resolutions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.50%
发文量
165
审稿时长
1 months
期刊介绍: The International Journal of Legal Medicine aims to improve the scientific resources used in the elucidation of crime and related forensic applications at a high level of evidential proof. The journal offers review articles tracing development in specific areas, with up-to-date analysis; original articles discussing significant recent research results; case reports describing interesting and exceptional examples; population data; letters to the editors; and technical notes, which appear in a section originally created for rapid publication of data in the dynamic field of DNA analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信