Riqian Hu, Ruiquan Ge, Guojian Deng, Jin Fan, Bowen Tang, Changmiao Wang
{"title":"MultiKD-DTA: Enhancing Drug-Target Affinity Prediction Through Multiscale Feature Extraction.","authors":"Riqian Hu, Ruiquan Ge, Guojian Deng, Jin Fan, Bowen Tang, Changmiao Wang","doi":"10.1007/s12539-025-00697-4","DOIUrl":null,"url":null,"abstract":"<p><p>The discovery and development of novel pharmaceutical agents is characterized by high costs, lengthy timelines, and significant safety concerns. Traditional drug discovery involves pharmacologists manually screening drug molecules against protein targets, focusing on binding within protein cavities. However, this manual process is slow and inherently limited. Given these constraints, the use of deep learning techniques to predict drug-target interaction (DTI) affinities is both significant and promising for future applications. This paper introduces an innovative deep learning architecture designed to enhance the prediction of DTI affinities. The model ingeniously combines graph neural networks, pre-trained large-scale protein models, and attention mechanisms to improve performance. In this framework, molecular structures are represented as graphs and processed through graph neural networks and multiscale convolutional networks to facilitate feature extraction. Simultaneously, protein sequences are encoded using pre-trained ESM-2 large models and processed with bidirectional long short-term memory networks. Subsequently, the molecular and protein embeddings derived from these processes are integrated within a fusion module to compute affinity scores. Experimental results demonstrate that our proposed model outperforms existing methods on two publicly available datasets.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-025-00697-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The discovery and development of novel pharmaceutical agents is characterized by high costs, lengthy timelines, and significant safety concerns. Traditional drug discovery involves pharmacologists manually screening drug molecules against protein targets, focusing on binding within protein cavities. However, this manual process is slow and inherently limited. Given these constraints, the use of deep learning techniques to predict drug-target interaction (DTI) affinities is both significant and promising for future applications. This paper introduces an innovative deep learning architecture designed to enhance the prediction of DTI affinities. The model ingeniously combines graph neural networks, pre-trained large-scale protein models, and attention mechanisms to improve performance. In this framework, molecular structures are represented as graphs and processed through graph neural networks and multiscale convolutional networks to facilitate feature extraction. Simultaneously, protein sequences are encoded using pre-trained ESM-2 large models and processed with bidirectional long short-term memory networks. Subsequently, the molecular and protein embeddings derived from these processes are integrated within a fusion module to compute affinity scores. Experimental results demonstrate that our proposed model outperforms existing methods on two publicly available datasets.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.