Diagnostic accuracy of convolutional neural network algorithms to distinguish gastrointestinal obstruction on conventional radiographs in a pediatric population.
IF 1.4 4区 医学Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
{"title":"Diagnostic accuracy of convolutional neural network algorithms to distinguish gastrointestinal obstruction on conventional radiographs in a pediatric population.","authors":"Ercan Ayaz, Hasan Güçlü, Ayşe Betül Oktay","doi":"10.4274/dir.2025.242950","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Gastrointestinal (GI) dilatations are frequently observed in radiographs of pediatric patients who visit emergency departments with acute symptoms such as vomiting, pain, constipation, or diarrhea. Timely and accurate differentiation of whether there is an obstruction requiring surgery in these patients is crucial to prevent complications such as necrosis and perforation, which can lead to death. In this study, we aimed to use convolutional neural network (CNN) models to differentiate healthy children with normal intestinal gas distribution in abdominal radiographs from those with GI dilatation or obstruction. We also aimed to distinguish patients with obstruction requiring surgery and those with other GI dilatation or ileus.</p><p><strong>Methods: </strong>Abdominal radiographs of patients with a surgical, clinical, and/or laboratory diagnosis of GI diseases with GI dilatation were retrieved from our institution's Picture Archiving and Communication System archive. Additionally, abdominal radiographs performed to detect abnormalities other than GI disorders were collected to form a control group. The images were labeled with three tags according to their groups: surgically-corrected dilatation (SD), inflammatory/infectious dilatation (ID), and normal. To determine the impact of standardizing the imaging area on the model's performance, an additional dataset was created by applying an automated cropping process. Five CNN models with proven success in image analysis (ResNet50, InceptionResNetV2, Xception, EfficientNetV2L, and ConvNeXtXLarge) were trained, validated, and tested using transfer learning.</p><p><strong>Results: </strong>A total of 540 normal, 298 SD, and 314 ID were used in this study. In the differentiation between normal and abnormal images, the highest accuracy rates were achieved with ResNet50 (93.3%) and InceptionResNetV2 (90.6%) CNN models. Then, after using automated cropping preprocessing, the highest accuracy rates were achieved with ConvNeXtXLarge (96.9%), ResNet50 (95.5%), and InceptionResNetV2 (95.5%). The highest accuracy in the differentiation between SD and ID was achieved with EfficientNetV2L (94.6%).</p><p><strong>Conclusion: </strong>Deep learning models can be integrated into radiographs located in the emergency departments as a decision support system with high accuracy rates in pediatric GI obstructions by immediately alerting the physicians about abnormal radiographs and possible etiologies.</p><p><strong>Clinical significance: </strong>This paper describes a novel area of utilization of well-known deep learning algorithm models. Although some studies in the literature have shown the efficiency of CNN models in identifying small bowel obstruction with high accuracy for the adult population or some specific diseases, our study is unique for the pediatric population and for evaluating the requirement of surgical versus medical treatment.</p>","PeriodicalId":11341,"journal":{"name":"Diagnostic and interventional radiology","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic and interventional radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4274/dir.2025.242950","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Gastrointestinal (GI) dilatations are frequently observed in radiographs of pediatric patients who visit emergency departments with acute symptoms such as vomiting, pain, constipation, or diarrhea. Timely and accurate differentiation of whether there is an obstruction requiring surgery in these patients is crucial to prevent complications such as necrosis and perforation, which can lead to death. In this study, we aimed to use convolutional neural network (CNN) models to differentiate healthy children with normal intestinal gas distribution in abdominal radiographs from those with GI dilatation or obstruction. We also aimed to distinguish patients with obstruction requiring surgery and those with other GI dilatation or ileus.
Methods: Abdominal radiographs of patients with a surgical, clinical, and/or laboratory diagnosis of GI diseases with GI dilatation were retrieved from our institution's Picture Archiving and Communication System archive. Additionally, abdominal radiographs performed to detect abnormalities other than GI disorders were collected to form a control group. The images were labeled with three tags according to their groups: surgically-corrected dilatation (SD), inflammatory/infectious dilatation (ID), and normal. To determine the impact of standardizing the imaging area on the model's performance, an additional dataset was created by applying an automated cropping process. Five CNN models with proven success in image analysis (ResNet50, InceptionResNetV2, Xception, EfficientNetV2L, and ConvNeXtXLarge) were trained, validated, and tested using transfer learning.
Results: A total of 540 normal, 298 SD, and 314 ID were used in this study. In the differentiation between normal and abnormal images, the highest accuracy rates were achieved with ResNet50 (93.3%) and InceptionResNetV2 (90.6%) CNN models. Then, after using automated cropping preprocessing, the highest accuracy rates were achieved with ConvNeXtXLarge (96.9%), ResNet50 (95.5%), and InceptionResNetV2 (95.5%). The highest accuracy in the differentiation between SD and ID was achieved with EfficientNetV2L (94.6%).
Conclusion: Deep learning models can be integrated into radiographs located in the emergency departments as a decision support system with high accuracy rates in pediatric GI obstructions by immediately alerting the physicians about abnormal radiographs and possible etiologies.
Clinical significance: This paper describes a novel area of utilization of well-known deep learning algorithm models. Although some studies in the literature have shown the efficiency of CNN models in identifying small bowel obstruction with high accuracy for the adult population or some specific diseases, our study is unique for the pediatric population and for evaluating the requirement of surgical versus medical treatment.
期刊介绍:
Diagnostic and Interventional Radiology (Diagn Interv Radiol) is the open access, online-only official publication of Turkish Society of Radiology. It is published bimonthly and the journal’s publication language is English.
The journal is a medium for original articles, reviews, pictorial essays, technical notes related to all fields of diagnostic and interventional radiology.