Weihua Guo, Ge Ye, Libei Huang, Zihao Li, Yun Song, Jianjun Su, Xiaohu Cao, Geng Li, Yong Liu, Yinger Xin, Qiang Zhang, Mingming He, Ruquan Ye
{"title":"Tailoring the Catalytic Activity of Metal Catalysts by Laser Irradiation.","authors":"Weihua Guo, Ge Ye, Libei Huang, Zihao Li, Yun Song, Jianjun Su, Xiaohu Cao, Geng Li, Yong Liu, Yinger Xin, Qiang Zhang, Mingming He, Ruquan Ye","doi":"10.1002/chem.202404378","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, the rapid advancements in laser technology have garnered considerable interest as an efficient method for synthesizing electrocatalytic nanomaterials. This review delves into the progress made in laser-induced nanomaterials for electrocatalysis, providing a comprehensive overview of the synthesis strategies and catalytic mechanisms involved in defect engineering, morphology tuning, and heterostructure formation. The review highlights the various laser-induced synthesis techniques in producing nanomaterials with enhanced electrocatalytic properties. It discusses the underlying mechanisms through which laser irradiation can induce defects, modify morphology, and create heterostructures in nanomaterials, ultimately leading to improved catalytic performance. The comprehensive summary of these synthesis strategies and catalytic mechanisms provides valuable insights for researchers interested in utilizing laser technology for the fabrication of advanced electrocatalytic materials. Furthermore, this review identifies the existing challenges and outlines future directions within this booming research field. By addressing the current limitations and discussing potential avenues for exploration, the review provides important guidance for researchers looking to design and fabricate laser-induced nanomaterials with desirable properties for advanced electrocatalysis and beyond.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":" ","pages":"e202404378"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/chem.202404378","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the rapid advancements in laser technology have garnered considerable interest as an efficient method for synthesizing electrocatalytic nanomaterials. This review delves into the progress made in laser-induced nanomaterials for electrocatalysis, providing a comprehensive overview of the synthesis strategies and catalytic mechanisms involved in defect engineering, morphology tuning, and heterostructure formation. The review highlights the various laser-induced synthesis techniques in producing nanomaterials with enhanced electrocatalytic properties. It discusses the underlying mechanisms through which laser irradiation can induce defects, modify morphology, and create heterostructures in nanomaterials, ultimately leading to improved catalytic performance. The comprehensive summary of these synthesis strategies and catalytic mechanisms provides valuable insights for researchers interested in utilizing laser technology for the fabrication of advanced electrocatalytic materials. Furthermore, this review identifies the existing challenges and outlines future directions within this booming research field. By addressing the current limitations and discussing potential avenues for exploration, the review provides important guidance for researchers looking to design and fabricate laser-induced nanomaterials with desirable properties for advanced electrocatalysis and beyond.
期刊介绍:
Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.
Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world.
All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times.
The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems.
Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.