Peter Lundgård Krøll, Magnus Bukhave Johansen, Andreas Erbs Hillers-Bendtsen, Ahmed Ali El-Sayed, Mathias Dowds, Andrea Knakkergaard Knub, Viktor Bliksted Roug Pedersen, Kurt V Mikkelsen, Mogens Brøndsted Nielsen
{"title":"Synthesis and Properties of Acetylenic Scaffolds Modeling Segments of 6,6,12-Graphyne.","authors":"Peter Lundgård Krøll, Magnus Bukhave Johansen, Andreas Erbs Hillers-Bendtsen, Ahmed Ali El-Sayed, Mathias Dowds, Andrea Knakkergaard Knub, Viktor Bliksted Roug Pedersen, Kurt V Mikkelsen, Mogens Brøndsted Nielsen","doi":"10.1002/chem.202500360","DOIUrl":null,"url":null,"abstract":"<p><p>6,6,12-Graphyne is an all-carbon network formally generated by interspersing sp- and sp2-hybridized carbon atoms between the carbon hexagons of graphene. Tetraethynylethene (TEE) is one structural unit that can be identified as bridging the benzene rings in 6,6,12-graphyne. Here we present the synthesis by stepwise Sonogashira couplings of TEE scaffolds that can be considered as small model systems of 6,6,12-graphyne segments. Electrochemical studies of the scaffolds revealed that they are weaker electron acceptors than related, but smaller, radiaannulene oligomers that were previously studied as relevant model systems of other 6,6,12-graphyne segments. The connectivity of the TEE units in these acyclic oligomers plays a role for their acceptor strengths according to experiments and quantum-chemical calculations. Moreover, optical studies reveal redshifted longest-wavelength absorptions as the oligomer length increases, but only to a small degree when moving from dimer to trimer structures. Experimental results were complemented by calculated absorption and redox properties.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":" ","pages":"e202500360"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/chem.202500360","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
6,6,12-Graphyne is an all-carbon network formally generated by interspersing sp- and sp2-hybridized carbon atoms between the carbon hexagons of graphene. Tetraethynylethene (TEE) is one structural unit that can be identified as bridging the benzene rings in 6,6,12-graphyne. Here we present the synthesis by stepwise Sonogashira couplings of TEE scaffolds that can be considered as small model systems of 6,6,12-graphyne segments. Electrochemical studies of the scaffolds revealed that they are weaker electron acceptors than related, but smaller, radiaannulene oligomers that were previously studied as relevant model systems of other 6,6,12-graphyne segments. The connectivity of the TEE units in these acyclic oligomers plays a role for their acceptor strengths according to experiments and quantum-chemical calculations. Moreover, optical studies reveal redshifted longest-wavelength absorptions as the oligomer length increases, but only to a small degree when moving from dimer to trimer structures. Experimental results were complemented by calculated absorption and redox properties.
期刊介绍:
Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.
Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world.
All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times.
The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems.
Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.