Yue Zhang, Yuzhu Hu, Dongmei Su, Yanjiang Fu, Xiaoya Chen, Xiao Zhang, Shunfei Zheng, Xu Ma, Shanshan Hu
{"title":"Downregulation of RORl via STAT3 and P300 Promotes P38 Pathway- Dependent Lens Epithelial Cells Apoptosis in Age-Related Cataract.","authors":"Yue Zhang, Yuzhu Hu, Dongmei Su, Yanjiang Fu, Xiaoya Chen, Xiao Zhang, Shunfei Zheng, Xu Ma, Shanshan Hu","doi":"10.1007/s10528-025-11067-6","DOIUrl":null,"url":null,"abstract":"<p><p>Lens Epithelial Cells (LECs) apoptosis is a critical driving factor of age-related cataract (ARC), but the specific molecular mechanisms remain undefined. Herein, a novel target of ROR1 regulation was identified, the mechanism was elucidated by which ROR1 and its associated pathway proteins influence hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>)-induced apoptosis of LECs in ARC. We found decreased ROR1 expression in human cataract lens capsules compared to normal ones, the trend was also observed in young and old mice. Experiments including CCK8, Hoechst 33,342 staining, and Western blot analysis confirmed that reduced ROR1 levels were linked to H<sub>2</sub>O<sub>2</sub>-induced apoptosis in HLEB3 cells. To investigate its effects on cell viability and apoptosis, we created a ROR1 interference plasmid and an overexpression plasmid. The overexpression of ROR1 effectively inhibited H<sub>2</sub>O<sub>2</sub>-induced apoptosis of HLEB3 cells while ROR1 knockdown lowered the viability and increased the apoptosis of HLEB3 cells. Additionally, increased P38 phosphorylation was identified as a contributor to lens epithelial cell apoptosis and ARC, with ROR1 influencing this through the phosphorylation of the P38. Similarly, the relationships between P300 and STAT3, upstream of ROR1, in apoptosis of LECs and ARC were explored, and it was found that P300 and STAT3 were negatively correlated with apoptosis of LECs and ARC. In addition, the double luciferase report showed that P300 and STAT3 synergistically up-regulated the expression of ROR1. Overall, this study demonstrates that the STAT3/ROR1/P38 pathway mitigates apoptosis of LECs in ARC progression, offering a novel strategy for ARC prevention and treatment in clinical settings.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-025-11067-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lens Epithelial Cells (LECs) apoptosis is a critical driving factor of age-related cataract (ARC), but the specific molecular mechanisms remain undefined. Herein, a novel target of ROR1 regulation was identified, the mechanism was elucidated by which ROR1 and its associated pathway proteins influence hydrogen peroxide (H2O2)-induced apoptosis of LECs in ARC. We found decreased ROR1 expression in human cataract lens capsules compared to normal ones, the trend was also observed in young and old mice. Experiments including CCK8, Hoechst 33,342 staining, and Western blot analysis confirmed that reduced ROR1 levels were linked to H2O2-induced apoptosis in HLEB3 cells. To investigate its effects on cell viability and apoptosis, we created a ROR1 interference plasmid and an overexpression plasmid. The overexpression of ROR1 effectively inhibited H2O2-induced apoptosis of HLEB3 cells while ROR1 knockdown lowered the viability and increased the apoptosis of HLEB3 cells. Additionally, increased P38 phosphorylation was identified as a contributor to lens epithelial cell apoptosis and ARC, with ROR1 influencing this through the phosphorylation of the P38. Similarly, the relationships between P300 and STAT3, upstream of ROR1, in apoptosis of LECs and ARC were explored, and it was found that P300 and STAT3 were negatively correlated with apoptosis of LECs and ARC. In addition, the double luciferase report showed that P300 and STAT3 synergistically up-regulated the expression of ROR1. Overall, this study demonstrates that the STAT3/ROR1/P38 pathway mitigates apoptosis of LECs in ARC progression, offering a novel strategy for ARC prevention and treatment in clinical settings.
期刊介绍:
Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses.
Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication.
Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses.
Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods.
Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.