Genome-wide prediction of dominant and recessive neurodevelopmental disorder-associated genes.

IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY
American journal of human genetics Pub Date : 2025-03-06 Epub Date: 2025-02-26 DOI:10.1016/j.ajhg.2025.02.001
Ryan S Dhindsa, Blake A Weido, Justin S Dhindsa, Arya J Shetty, Chloe F Sands, Slavé Petrovski, Dimitrios Vitsios, Anthony W Zoghbi
{"title":"Genome-wide prediction of dominant and recessive neurodevelopmental disorder-associated genes.","authors":"Ryan S Dhindsa, Blake A Weido, Justin S Dhindsa, Arya J Shetty, Chloe F Sands, Slavé Petrovski, Dimitrios Vitsios, Anthony W Zoghbi","doi":"10.1016/j.ajhg.2025.02.001","DOIUrl":null,"url":null,"abstract":"<p><p>Despite great progress, thousands of neurodevelopmental disorder (NDD) risk genes remain to be discovered. We present a computational approach that accelerates NDD risk gene identification using machine learning. First, we demonstrate that models trained solely on single-cell RNA sequencing data can robustly predict genes implicated in autism spectrum disorder (ASD), developmental and epileptic encephalopathy (DEE), and developmental delay (DD). Notably, we find differences in gene expression patterns of genes with monoallelic and bi-allelic inheritance patterns in the developing human cortex. We then integrate expression data with 300 orthogonal features, including intolerance metrics, protein-protein interaction data, and others, in a semi-supervised machine learning framework (mantis-ml) to train inheritance-specific models for these disorders. The models have high predictive power (area under the receiver operator curves [AUCs]: 0.84-0.95), and the top-ranked genes were up to 2-fold (monoallelic models) and 6-fold (bi-allelic models) more enriched for high-confidence NDD risk genes compared to genic intolerance metrics alone. Additionally, genes ranking in the top decile were 45 to 180 times more likely to have literature support than those in the bottom decile. Collectively, this work provides robust NDD risk gene predictions that can complement large-scale gene discovery efforts and underscores the importance of considering inheritance in gene risk prediction.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"693-708"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11947176/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2025.02.001","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite great progress, thousands of neurodevelopmental disorder (NDD) risk genes remain to be discovered. We present a computational approach that accelerates NDD risk gene identification using machine learning. First, we demonstrate that models trained solely on single-cell RNA sequencing data can robustly predict genes implicated in autism spectrum disorder (ASD), developmental and epileptic encephalopathy (DEE), and developmental delay (DD). Notably, we find differences in gene expression patterns of genes with monoallelic and bi-allelic inheritance patterns in the developing human cortex. We then integrate expression data with 300 orthogonal features, including intolerance metrics, protein-protein interaction data, and others, in a semi-supervised machine learning framework (mantis-ml) to train inheritance-specific models for these disorders. The models have high predictive power (area under the receiver operator curves [AUCs]: 0.84-0.95), and the top-ranked genes were up to 2-fold (monoallelic models) and 6-fold (bi-allelic models) more enriched for high-confidence NDD risk genes compared to genic intolerance metrics alone. Additionally, genes ranking in the top decile were 45 to 180 times more likely to have literature support than those in the bottom decile. Collectively, this work provides robust NDD risk gene predictions that can complement large-scale gene discovery efforts and underscores the importance of considering inheritance in gene risk prediction.

神经发育障碍相关显性和隐性基因的全基因组预测。
尽管取得了很大进展,但仍有数以千计的神经发育障碍(NDD)风险基因有待发现。我们提出了一种使用机器学习加速NDD风险基因识别的计算方法。首先,我们证明了仅用单细胞RNA测序数据训练的模型可以可靠地预测与自闭症谱系障碍(ASD)、发育性和癫痫性脑病(DEE)以及发育迟缓(DD)相关的基因。值得注意的是,我们发现在发育中的人类皮层中,单等位基因和双等位基因遗传模式的基因表达模式存在差异。然后,我们在半监督机器学习框架(螳螂-ml)中整合表达数据与300个正交特征,包括不耐受指标,蛋白质-蛋白质相互作用数据等,以训练这些疾病的遗传特异性模型。该模型具有很高的预测能力(受试者操作曲线下面积[auc]: 0.84-0.95),与单独的基因不耐受指标相比,高置信度NDD风险基因的排名最高的基因最多可增加2倍(单等位基因模型)和6倍(双等位基因模型)。此外,排名前十分之一的基因得到文献支持的可能性是排名后十分之一的基因的45到180倍。总的来说,这项工作提供了强大的NDD风险基因预测,可以补充大规模的基因发现工作,并强调了在基因风险预测中考虑遗传的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.70
自引率
4.10%
发文量
185
审稿时长
1 months
期刊介绍: The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信