Research Progress on the Enhancement and Modification of PVDF-Based Polymer Electrolytes and Their Applications in Solid-State Lithium Metal Batteries.
{"title":"Research Progress on the Enhancement and Modification of PVDF-Based Polymer Electrolytes and Their Applications in Solid-State Lithium Metal Batteries.","authors":"Fangyuan Zhao, Jialong Wu, Chu Qin, Zhong-Jie Jiang, Guangliang Chen, T Maiyalagan, Zhongqing Jiang","doi":"10.1002/asia.202401974","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional liquid electrolyte-based lithium-ion batteries (LIBs) are constrained by safety risks such as flammability and explosion, as well as a relatively low theoretical specific capacity (~300 mAh g<sup>-1</sup>). Lithium-metal batteries (LMB), which offer higher energy density and enhanced safety, have emerged as competitive candidates for next-generation lithium-based batteries. As a key component of LMBs, polymer electrolytes are expected to exhibit excellent ionic conductivity, robust mechanical properties, and stable interfacial compatibility with electrode materials. Among the diverse range of polymer electrolytes, polyvinylidene fluoride (PVDF)-based polymer electrolytes stand out due to their unique properties. PVDF, with its high dielectric constant, effectively facilitates lithium salt dissociation and ion migration, while maintaining excellent mechanical flexibility. These characteristics position PVDF-based polymer electrolytes as a promising material for LMBs. This review begins by introducing the classification of polymer electrolytes and the mechanisms of lithium-ion migration within them. It then focuses on PVDF-based polymer electrolytes, systematically discussing the synthetic and modification strategies categorized into four main approaches: composite fabrication, inorganic filler doping, liquid additive modification, and multi-strategy modification. Finally, the challenges and future prospects of PVDF-based polymer electrolytes are reviewed to provide insights for developing high-performance polymer electrolytes in the future.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202401974"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202401974","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional liquid electrolyte-based lithium-ion batteries (LIBs) are constrained by safety risks such as flammability and explosion, as well as a relatively low theoretical specific capacity (~300 mAh g-1). Lithium-metal batteries (LMB), which offer higher energy density and enhanced safety, have emerged as competitive candidates for next-generation lithium-based batteries. As a key component of LMBs, polymer electrolytes are expected to exhibit excellent ionic conductivity, robust mechanical properties, and stable interfacial compatibility with electrode materials. Among the diverse range of polymer electrolytes, polyvinylidene fluoride (PVDF)-based polymer electrolytes stand out due to their unique properties. PVDF, with its high dielectric constant, effectively facilitates lithium salt dissociation and ion migration, while maintaining excellent mechanical flexibility. These characteristics position PVDF-based polymer electrolytes as a promising material for LMBs. This review begins by introducing the classification of polymer electrolytes and the mechanisms of lithium-ion migration within them. It then focuses on PVDF-based polymer electrolytes, systematically discussing the synthetic and modification strategies categorized into four main approaches: composite fabrication, inorganic filler doping, liquid additive modification, and multi-strategy modification. Finally, the challenges and future prospects of PVDF-based polymer electrolytes are reviewed to provide insights for developing high-performance polymer electrolytes in the future.
-基于聚偏二氟乙烯(PVDF)的聚合物电解质的增强和改性及其在固态锂金属电池中的应用的研究进展》(Research Progress on Enhancement and Modification of PVDF-Based Polymer Electrolytes and Their Applications in Solid-State Lithium Metal Batteries)。
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).