Shayan Ghasemi, Mahyar Panahi-Sarmad, Elnaz Erfanian, Tianyu Guo, Vahid Rad, Adel Jalaee, Gabriel Banvillet, E Johan Foster, Kam C Tam, Masoud Soroush, Feng Jiang, Orlando J Rojas, Milad Kamkar
{"title":"Droplet-templating soft materials into structured bead-based aerogels with compartmentalized or welded configurations.","authors":"Shayan Ghasemi, Mahyar Panahi-Sarmad, Elnaz Erfanian, Tianyu Guo, Vahid Rad, Adel Jalaee, Gabriel Banvillet, E Johan Foster, Kam C Tam, Masoud Soroush, Feng Jiang, Orlando J Rojas, Milad Kamkar","doi":"10.1039/d4mh01896f","DOIUrl":null,"url":null,"abstract":"<p><p>Achieving precise control over the composition and architecture of nanomaterial-based aerogels remains a significant challenge. Here, we introduce a droplet-templating approach to engineer ultra-lightweight aerogels <i>via</i> the interfacial co-assembly of nanoparticles-surfactants (NPSs) at polar/apolar liquid interfaces. This approach enables the creation of aerogels with tailored compartmentalized or welded bead architectures, exhibiting multilayer, gradient, and hybrid morphologies from a range of 1D and 2D nanomaterials. By precisely controlling evaporation and freeze-drying processes, we fabricate aerogels with customizable micro-domains, without requiring chemical binders. Our approach provides a platform for developing soft materials with tunable properties, paving a new path for applications in soft matter and aerogel engineering.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01896f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Achieving precise control over the composition and architecture of nanomaterial-based aerogels remains a significant challenge. Here, we introduce a droplet-templating approach to engineer ultra-lightweight aerogels via the interfacial co-assembly of nanoparticles-surfactants (NPSs) at polar/apolar liquid interfaces. This approach enables the creation of aerogels with tailored compartmentalized or welded bead architectures, exhibiting multilayer, gradient, and hybrid morphologies from a range of 1D and 2D nanomaterials. By precisely controlling evaporation and freeze-drying processes, we fabricate aerogels with customizable micro-domains, without requiring chemical binders. Our approach provides a platform for developing soft materials with tunable properties, paving a new path for applications in soft matter and aerogel engineering.