{"title":"An integratible acoustic micropump based on the resonance of on-substrate sharp-edge micropillar arrays.","authors":"Yu Zhang, Zeyi Wang, Yang Zhao, Qinran Wei, Haixiang Zheng, Dong Zhang, Xiasheng Guo","doi":"10.1039/d4lc00997e","DOIUrl":null,"url":null,"abstract":"<p><p>There is a growing demand for reliable, efficient, and easily integrated micropumps for microfluidics. Despite the demonstrated potential of acoustic wave-driven devices for on-chip pumping, current prototypes lack the practicality and integratability for deployment in microfluidic systems. This study presents an acoustic micropump based on the resonance of arrays of on-substrate sharp-edge micropillars prepared in a fluid-filled channel and driven by a piston ultrasonic transducer. At an operating frequency of 80.5 kHz and a driving voltage of 54 V<sub>p-p</sub>, a flow rate of 16.2 μL min<sup>-1</sup> is achieved in a downstream straight channel with dimensions 12(<i>L</i>) × 0.6(<i>W</i>) × 0.2(<i>H</i>) mm<sup>3</sup>. The corresponding pumping pressure exceeds 1.3 kPa, more than an order of magnitude higher than its predecessors. In experimental demonstrations, two micropumps are employed as feeding units for an acoustofluidic particle separation device based on tilted-angle standing surface acoustic waves (TaSSAWs). The current micropump exhibits advantages of high pumping pressure, fast response time, and high reliability, making it a promising pumping unit for lab-on-a-chip systems.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4lc00997e","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
There is a growing demand for reliable, efficient, and easily integrated micropumps for microfluidics. Despite the demonstrated potential of acoustic wave-driven devices for on-chip pumping, current prototypes lack the practicality and integratability for deployment in microfluidic systems. This study presents an acoustic micropump based on the resonance of arrays of on-substrate sharp-edge micropillars prepared in a fluid-filled channel and driven by a piston ultrasonic transducer. At an operating frequency of 80.5 kHz and a driving voltage of 54 Vp-p, a flow rate of 16.2 μL min-1 is achieved in a downstream straight channel with dimensions 12(L) × 0.6(W) × 0.2(H) mm3. The corresponding pumping pressure exceeds 1.3 kPa, more than an order of magnitude higher than its predecessors. In experimental demonstrations, two micropumps are employed as feeding units for an acoustofluidic particle separation device based on tilted-angle standing surface acoustic waves (TaSSAWs). The current micropump exhibits advantages of high pumping pressure, fast response time, and high reliability, making it a promising pumping unit for lab-on-a-chip systems.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.