Functional Divergence of Plant-Derived Thaumatin-Like Protein Genes in Two Closely Related Whitefly Species.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuan Hu, Cheng Gong, Zezhong Yang, Haolin Han, Tian Tian, Xin Yang, Wen Xie, Shaoli Wang, Qingjun Wu, Xuguo Zhou, Ted C J Turlings, Zhaojiang Guo, Youjun Zhang
{"title":"Functional Divergence of Plant-Derived Thaumatin-Like Protein Genes in Two Closely Related Whitefly Species.","authors":"Yuan Hu, Cheng Gong, Zezhong Yang, Haolin Han, Tian Tian, Xin Yang, Wen Xie, Shaoli Wang, Qingjun Wu, Xuguo Zhou, Ted C J Turlings, Zhaojiang Guo, Youjun Zhang","doi":"10.1002/advs.202502193","DOIUrl":null,"url":null,"abstract":"<p><p>The recent discovery that various insects have acquired functional genes through horizontal gene transfer (HGT) has prompted numerous studies into this puzzling and fascinating phenomenon. So far, horizontally transferred genes are found to be functionally conserved and largely retained their ancestral functions. It evidently has not yet been considered that horizontally transferred genes may evolve and can contribute to divergence between species. Here, it is first showed that the genomes of the two widespread and agriculturally important whiteflies Trialeurodes vaporariorum and Bemisia tabaci both contain a plant-derived thaumatin-like protein (TLP) gene, but with highly distinct functions in these closely related pests. In T. vaporariorum, TLP has maintained a function similar to that of the plant donor, acting as an antimicrobial protein to resist fungal infection; but in sharp contrast, in B. tabaci, TLP has evolved into an effector that suppresses plant defense responses. These findings reveal an as-yet undescribed scenario of cross-species functional differentiation of horizontally transferred genes and suggest that the HGT-mediated evolutionary novelty can contribute to ecotypic divergence and even speciation.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2502193"},"PeriodicalIF":14.3000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202502193","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The recent discovery that various insects have acquired functional genes through horizontal gene transfer (HGT) has prompted numerous studies into this puzzling and fascinating phenomenon. So far, horizontally transferred genes are found to be functionally conserved and largely retained their ancestral functions. It evidently has not yet been considered that horizontally transferred genes may evolve and can contribute to divergence between species. Here, it is first showed that the genomes of the two widespread and agriculturally important whiteflies Trialeurodes vaporariorum and Bemisia tabaci both contain a plant-derived thaumatin-like protein (TLP) gene, but with highly distinct functions in these closely related pests. In T. vaporariorum, TLP has maintained a function similar to that of the plant donor, acting as an antimicrobial protein to resist fungal infection; but in sharp contrast, in B. tabaci, TLP has evolved into an effector that suppresses plant defense responses. These findings reveal an as-yet undescribed scenario of cross-species functional differentiation of horizontally transferred genes and suggest that the HGT-mediated evolutionary novelty can contribute to ecotypic divergence and even speciation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信