Hema Naveena A, Anup Kumar, Animesh Agrawal, Leo Mavely, Dhiraj Bhatia
{"title":"Characterization of a Bioactive Chitosan Dressing: A Comprehensive Solution for Different Wound Healing Phases.","authors":"Hema Naveena A, Anup Kumar, Animesh Agrawal, Leo Mavely, Dhiraj Bhatia","doi":"10.1021/acsabm.4c01161","DOIUrl":null,"url":null,"abstract":"<p><p>Wound management has made significant advances over the past few decades, particularly with the development of advanced dressings that facilitate autolytic debridement, the absorption of wound exudate, and protection from external bacteria. However, finding a single dressing that effectively addresses all four phases of wound healing─hemostasis, inflammation, proliferation, and remodeling─remains a major challenge. Additionally, biofilms in chronic wounds pose a substantial obstacle by shielding microbes from topical antiseptics and antibiotics, thereby delaying the healing process. This study evaluates the wound-healing properties of a commercially available bioactive microfiber gelling (BMG) dressing made from chitosan alongside commercially available silver-loaded carboxymethyl cellulose (CMC-Ag) dressing, carboxymethyl cellulose dressing (CMC) and cotton gauze. In vitro testing demonstrated that the BMG dressing significantly exhibited superior fluid absorption and exudate-locking properties compared with the CMC-Ag dressing. Additionally, the BMG dressing effectively sequestered and eradicated wound-relevant pathogenic microorganisms, including drug-resistant bacteria. Its bioactive properties were further highlighted by its ability to enhance platelet-derived growth factor (PDGF) expression and sequester matrix metalloproteases (MMPs). Overall, this study highlights the effectiveness of the BMG dressing in wound management, particularly in exudate absorption and antimicrobial activity, demonstrating its relevance in wound care.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Wound management has made significant advances over the past few decades, particularly with the development of advanced dressings that facilitate autolytic debridement, the absorption of wound exudate, and protection from external bacteria. However, finding a single dressing that effectively addresses all four phases of wound healing─hemostasis, inflammation, proliferation, and remodeling─remains a major challenge. Additionally, biofilms in chronic wounds pose a substantial obstacle by shielding microbes from topical antiseptics and antibiotics, thereby delaying the healing process. This study evaluates the wound-healing properties of a commercially available bioactive microfiber gelling (BMG) dressing made from chitosan alongside commercially available silver-loaded carboxymethyl cellulose (CMC-Ag) dressing, carboxymethyl cellulose dressing (CMC) and cotton gauze. In vitro testing demonstrated that the BMG dressing significantly exhibited superior fluid absorption and exudate-locking properties compared with the CMC-Ag dressing. Additionally, the BMG dressing effectively sequestered and eradicated wound-relevant pathogenic microorganisms, including drug-resistant bacteria. Its bioactive properties were further highlighted by its ability to enhance platelet-derived growth factor (PDGF) expression and sequester matrix metalloproteases (MMPs). Overall, this study highlights the effectiveness of the BMG dressing in wound management, particularly in exudate absorption and antimicrobial activity, demonstrating its relevance in wound care.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.