DESC: An Automated Strategy to Efficiently Account for Dynamic Environment Effects in Solution.

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL
Albert Masip-Sánchez, Josep M Poblet, Xavier López
{"title":"DESC: An Automated Strategy to Efficiently Account for Dynamic Environment Effects in Solution.","authors":"Albert Masip-Sánchez, Josep M Poblet, Xavier López","doi":"10.1021/acs.jctc.5c00002","DOIUrl":null,"url":null,"abstract":"<p><p>The properties and dynamic behavior of molecules in liquid solutions depend critically on the solvent and other species, or cosolutes, including electrolytes (if present), especially when molecular association or pairing occurs. In Quantum Mechanical (QM) calculations, the electronic structure of molecules in liquid solution is typically obtained with implicit solvent models (ISMs). However, ISMs cannot differentiate between, for example, cation types (e.g., Cs<sup>+</sup> versus <i>n</i>Bu<sub>4</sub>N<sup>+</sup>), leading to limited accuracy in capturing possible solute-specific interactions. Addressing this issue in QM calculations often requires an explicit treatment of the cosolute, typically a counterion, a challenging approach due to the definition of representative cosolute positions, numerical convergence, and high computational cost for bulky species. A new computational strategy called Dynamic Environment in Solution by Clustering (DESC) is herein presented, which leverages classical Molecular Dynamics (MD) data to feed QM calculations, enabling the inclusion of counterion-specific effects with greater detail and efficiency than ISMs. DESC is particularly advantageous in cases where ion pairing/aggregation is significant, offering chemically representative QM results at a small fraction of the computational cost associated with the explicit inclusion of counterions in the model. This work presents MD data on polyoxometalate-counterion-solvent systems, introduces the philosophy behind DESC and its operational details, and applies it to polyoxometalate solutions and other relevant systems, comparing outcomes with benchmark QM/ISM calculations.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.5c00002","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The properties and dynamic behavior of molecules in liquid solutions depend critically on the solvent and other species, or cosolutes, including electrolytes (if present), especially when molecular association or pairing occurs. In Quantum Mechanical (QM) calculations, the electronic structure of molecules in liquid solution is typically obtained with implicit solvent models (ISMs). However, ISMs cannot differentiate between, for example, cation types (e.g., Cs+ versus nBu4N+), leading to limited accuracy in capturing possible solute-specific interactions. Addressing this issue in QM calculations often requires an explicit treatment of the cosolute, typically a counterion, a challenging approach due to the definition of representative cosolute positions, numerical convergence, and high computational cost for bulky species. A new computational strategy called Dynamic Environment in Solution by Clustering (DESC) is herein presented, which leverages classical Molecular Dynamics (MD) data to feed QM calculations, enabling the inclusion of counterion-specific effects with greater detail and efficiency than ISMs. DESC is particularly advantageous in cases where ion pairing/aggregation is significant, offering chemically representative QM results at a small fraction of the computational cost associated with the explicit inclusion of counterions in the model. This work presents MD data on polyoxometalate-counterion-solvent systems, introduces the philosophy behind DESC and its operational details, and applies it to polyoxometalate solutions and other relevant systems, comparing outcomes with benchmark QM/ISM calculations.

DESC:在解决方案中有效考虑动态环境影响的自动策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信