Structure Characterization of Bacterial Microcompartment Shells via X-ray Scattering and Coordinate Modeling: Evidence for Adventitious Capture of Cytoplasmic Proteins.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xiaobing Zuo, Alexander Jussupow, Nina S Ponomarenko, Thomas D Grant, Nicholas M Tefft, Neetu Singh Yadav, Kyleigh L Range, Corie Y Ralston, Michaela A TerAvest, Markus Sutter, Cheryl A Kerfeld, Josh V Vermaas, Michael Feig, David M Tiede
{"title":"Structure Characterization of Bacterial Microcompartment Shells via X-ray Scattering and Coordinate Modeling: Evidence for Adventitious Capture of Cytoplasmic Proteins.","authors":"Xiaobing Zuo, Alexander Jussupow, Nina S Ponomarenko, Thomas D Grant, Nicholas M Tefft, Neetu Singh Yadav, Kyleigh L Range, Corie Y Ralston, Michaela A TerAvest, Markus Sutter, Cheryl A Kerfeld, Josh V Vermaas, Michael Feig, David M Tiede","doi":"10.1021/acsabm.4c01621","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial microcompartments (BMCs) are self-assembling protein shell structures that are widely investigated across a broad range of biological and abiotic chemistry applications. A central challenge in BMC research is the targeted capture of enzymes during shell assembly. While crystallography and cryo-EM techniques have been successful in determining BMC shell structures, there has been only limited success in visualizing the location of BMC-captured enzyme cargo. Here, we demonstrate the opportunity to use small-angle X-ray scattering (SAXS) and pair distance distribution function (PDDF) measurements combined with quantitative comparison to coordinate structure models as an approach to characterize BMC shell structures in solution conditions directly relevant to biochemical function. Using this approach, we analyzed BMC shells from <i>Haliangium ochraceum</i> (HO) that were isolated following expression in <i>E. coli</i>. The analysis allowed the BMC shell structures and the extent of encapsulated enzyme cargo to be identified. Notably, the results demonstrate that HO-BMC shells adventitiously capture significant amounts of cytoplasmic cargo during assembly in <i>E. coli</i>. Our findings highlight the utility of SAXS/PDDF analysis for evaluating BMC architectures and enzyme encapsulation, offering valuable insights for designing BMC shells as platforms for biological and abiotic catalyst capture within confined environments.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Bacterial microcompartments (BMCs) are self-assembling protein shell structures that are widely investigated across a broad range of biological and abiotic chemistry applications. A central challenge in BMC research is the targeted capture of enzymes during shell assembly. While crystallography and cryo-EM techniques have been successful in determining BMC shell structures, there has been only limited success in visualizing the location of BMC-captured enzyme cargo. Here, we demonstrate the opportunity to use small-angle X-ray scattering (SAXS) and pair distance distribution function (PDDF) measurements combined with quantitative comparison to coordinate structure models as an approach to characterize BMC shell structures in solution conditions directly relevant to biochemical function. Using this approach, we analyzed BMC shells from Haliangium ochraceum (HO) that were isolated following expression in E. coli. The analysis allowed the BMC shell structures and the extent of encapsulated enzyme cargo to be identified. Notably, the results demonstrate that HO-BMC shells adventitiously capture significant amounts of cytoplasmic cargo during assembly in E. coli. Our findings highlight the utility of SAXS/PDDF analysis for evaluating BMC architectures and enzyme encapsulation, offering valuable insights for designing BMC shells as platforms for biological and abiotic catalyst capture within confined environments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信