{"title":"Enhanced Heat Recovery From Electric Arc Furnaces: Optimization and Comparative Analysis of Steam and Organic Rankine Cycles","authors":"Mahdi Mehrpour, Ehsan Houshfar, Mehdi Ashjaee","doi":"10.1155/er/6689904","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In this study, two distinct approaches were proposed for recovering heat from the exhaust gases of electric arc furnaces (EAFs)—the steam cycle and the organic Rankine cycle (ORC). These methods were evaluated based on various criteria, including energy and exergy efficiency, economic feasibility, and environmental impacts. To identify optimal performance parameters, the effects of different working fluids in the ORC were examined, revealing significant variations in cycle behavior depending on the fluid used. Consequently, the most effective operational conditions for each specific fluid were identified and recorded based on temperature and pressure fluctuations. The analysis led to the selection of acetone as the optimal working fluid due to its favorable performance despite its high flammability, characterized by its isentropic nature. The energy and exergy efficiencies of the cycle using this fluid reached 21% and 61%, respectively, with a power output of 597.4 kW under maximum conditions. Additionally, the study demonstrated that, given the high temperature of the heat source, the steam cycle is more justifiable than the combined steam and ORC with the proposed configuration. The exergy efficiency of the steam cycle reached a maximum of 57%, with a net power output of 2897 kW and a total cost rate of $0.041/s under these conditions. Finally, by optimizing the steam cycle using a genetic algorithm, the ideal values for exergy efficiency were slightly reduced to 53%, with a significant decrease in the total cost rate to $0.036/s.</p>\n </div>","PeriodicalId":14051,"journal":{"name":"International Journal of Energy Research","volume":"2025 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/6689904","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/er/6689904","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, two distinct approaches were proposed for recovering heat from the exhaust gases of electric arc furnaces (EAFs)—the steam cycle and the organic Rankine cycle (ORC). These methods were evaluated based on various criteria, including energy and exergy efficiency, economic feasibility, and environmental impacts. To identify optimal performance parameters, the effects of different working fluids in the ORC were examined, revealing significant variations in cycle behavior depending on the fluid used. Consequently, the most effective operational conditions for each specific fluid were identified and recorded based on temperature and pressure fluctuations. The analysis led to the selection of acetone as the optimal working fluid due to its favorable performance despite its high flammability, characterized by its isentropic nature. The energy and exergy efficiencies of the cycle using this fluid reached 21% and 61%, respectively, with a power output of 597.4 kW under maximum conditions. Additionally, the study demonstrated that, given the high temperature of the heat source, the steam cycle is more justifiable than the combined steam and ORC with the proposed configuration. The exergy efficiency of the steam cycle reached a maximum of 57%, with a net power output of 2897 kW and a total cost rate of $0.041/s under these conditions. Finally, by optimizing the steam cycle using a genetic algorithm, the ideal values for exergy efficiency were slightly reduced to 53%, with a significant decrease in the total cost rate to $0.036/s.
期刊介绍:
The International Journal of Energy Research (IJER) is dedicated to providing a multidisciplinary, unique platform for researchers, scientists, engineers, technology developers, planners, and policy makers to present their research results and findings in a compelling manner on novel energy systems and applications. IJER covers the entire spectrum of energy from production to conversion, conservation, management, systems, technologies, etc. We encourage papers submissions aiming at better efficiency, cost improvements, more effective resource use, improved design and analysis, reduced environmental impact, and hence leading to better sustainability.
IJER is concerned with the development and exploitation of both advanced traditional and new energy sources, systems, technologies and applications. Interdisciplinary subjects in the area of novel energy systems and applications are also encouraged. High-quality research papers are solicited in, but are not limited to, the following areas with innovative and novel contents:
-Biofuels and alternatives
-Carbon capturing and storage technologies
-Clean coal technologies
-Energy conversion, conservation and management
-Energy storage
-Energy systems
-Hybrid/combined/integrated energy systems for multi-generation
-Hydrogen energy and fuel cells
-Hydrogen production technologies
-Micro- and nano-energy systems and technologies
-Nuclear energy
-Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass)
-Smart energy system