How Flood Hazards in a Warming Climate Could Be Amplified by Changes in Spatiotemporal Patterns and Mechanisms of Water Available for Runoff

IF 7.3 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Earths Future Pub Date : 2025-03-01 DOI:10.1029/2024EF005619
Hongxiang Yan, Zhuoran Duan, Mark S. Wigmosta, Ning Sun, L. Ruby Leung, Travis B. Thurber, Ethan D. Gutmann, Jeffrey R. Arnold
{"title":"How Flood Hazards in a Warming Climate Could Be Amplified by Changes in Spatiotemporal Patterns and Mechanisms of Water Available for Runoff","authors":"Hongxiang Yan,&nbsp;Zhuoran Duan,&nbsp;Mark S. Wigmosta,&nbsp;Ning Sun,&nbsp;L. Ruby Leung,&nbsp;Travis B. Thurber,&nbsp;Ethan D. Gutmann,&nbsp;Jeffrey R. Arnold","doi":"10.1029/2024EF005619","DOIUrl":null,"url":null,"abstract":"<p>Prior research on climate change impacts on flooding has primarily focused on changes in extreme rainfall magnitudes, often neglecting snow processes and spatiotemporal storm patterns, such as hyetograph shapes and areal reduction factors (ARFs). This study examines projected changes in extreme water available for runoff (<i>W</i>) events in two snow-dominated basins in the western United States: the Yakima River Basin (YRB) in Washington State and the Walker River Basin (WRB) spanning the California-Nevada border. We analyze changes in <i>W</i> magnitudes, mechanisms, hyetograph shapes, and ARFs, and study their compounded impacts on flood hazard. Our findings suggest increased extreme <i>W</i> magnitudes across a large portion of the basins, with steeper or flatter hyetographs, and higher ARF values under the future climate. These changes are driven by a shift from seasonal snowmelt to more rain-on-snow events at higher elevations and by increased rainfall at lower elevations. We then use a single event-based rainfall-runoff model to estimate flood hazard changes based on extreme <i>W</i> magnitudes, hyetograph shapes, ARFs, and their compounded impacts. Our analysis reveals that focusing solely on the magnitude of changes in extreme <i>W</i> can significantly underestimate future flood hazards and uncertainties. Ignoring future changes in spatiotemporal patterns can underestimate future flood hazards by 63% and underestimate the uncertainty in future flood events by 18% in the WRB. These results underscore the necessity of incorporating spatiotemporal dynamics into future flood hazard assessments to provide a more accurate evaluation of potential impacts.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":"13 3","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF005619","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earths Future","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EF005619","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Prior research on climate change impacts on flooding has primarily focused on changes in extreme rainfall magnitudes, often neglecting snow processes and spatiotemporal storm patterns, such as hyetograph shapes and areal reduction factors (ARFs). This study examines projected changes in extreme water available for runoff (W) events in two snow-dominated basins in the western United States: the Yakima River Basin (YRB) in Washington State and the Walker River Basin (WRB) spanning the California-Nevada border. We analyze changes in W magnitudes, mechanisms, hyetograph shapes, and ARFs, and study their compounded impacts on flood hazard. Our findings suggest increased extreme W magnitudes across a large portion of the basins, with steeper or flatter hyetographs, and higher ARF values under the future climate. These changes are driven by a shift from seasonal snowmelt to more rain-on-snow events at higher elevations and by increased rainfall at lower elevations. We then use a single event-based rainfall-runoff model to estimate flood hazard changes based on extreme W magnitudes, hyetograph shapes, ARFs, and their compounded impacts. Our analysis reveals that focusing solely on the magnitude of changes in extreme W can significantly underestimate future flood hazards and uncertainties. Ignoring future changes in spatiotemporal patterns can underestimate future flood hazards by 63% and underestimate the uncertainty in future flood events by 18% in the WRB. These results underscore the necessity of incorporating spatiotemporal dynamics into future flood hazard assessments to provide a more accurate evaluation of potential impacts.

Abstract Image

气候变暖条件下的洪水灾害如何因径流可用水的时空格局和机制变化而放大
以往关于气候变化对洪水影响的研究主要集中在极端降雨强度的变化上,往往忽视了降雪过程和时空风暴模式,如雨图形状和面积减少因子(ARFs)。本研究考察了美国西部两个以雪为主的流域(华盛顿州的亚基马河流域(YRB)和跨越加州-内华达州边界的沃克河流域(WRB))的径流(W)事件的极端可用水的预测变化。我们分析了W震级、机制、形态和arf的变化,并研究了它们对洪涝灾害的复合影响。我们的研究结果表明,在未来气候下,大部分盆地的极端W值增加,地形更陡峭或更平坦,ARF值更高。这些变化是由高海拔地区从季节性融雪到更多的雨雪事件的转变以及低海拔地区降雨的增加所驱动的。然后,我们使用基于单一事件的降雨-径流模型来估计基于极端W级、雨图形状、arf及其复合影响的洪水灾害变化。我们的分析表明,仅仅关注极端W的变化幅度会大大低估未来的洪水灾害和不确定性。在WRB中,忽略未来时空格局的变化会低估未来洪水灾害63%,低估未来洪水事件的不确定性18%。这些结果强调了将时空动力学纳入未来洪水灾害评估的必要性,以提供更准确的潜在影响评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earths Future
Earths Future ENVIRONMENTAL SCIENCESGEOSCIENCES, MULTIDI-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
11.00
自引率
7.30%
发文量
260
审稿时长
16 weeks
期刊介绍: Earth’s Future: A transdisciplinary open access journal, Earth’s Future focuses on the state of the Earth and the prediction of the planet’s future. By publishing peer-reviewed articles as well as editorials, essays, reviews, and commentaries, this journal will be the preeminent scholarly resource on the Anthropocene. It will also help assess the risks and opportunities associated with environmental changes and challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信