{"title":"Discovery of Dual-Inhibitor Acyl Hydrazones for Acetylcholinesterase and Carbonic Anhydrase I/II: A Mechanistic Insight into Alzheimer's Disease","authors":"Efe Doğukan Dincel, Ebru Didem Kuran, Yeliz Demir, Bilgesu Onur Sucu, İlhami Gülçin, Nuray Ulusoy-Güzeldemirci","doi":"10.1002/slct.202405876","DOIUrl":null,"url":null,"abstract":"<p>This study presents the synthesis of various non-sulfonamide acyl hydrazone derivatives intended as multi-target ligands for the treatment of Alzheimer's disease. The derivatives were thoroughly characterized using advanced spectroscopic techniques and their inhibitory activities against key enzymes, acetylcholinesterase (AChE) and human carbonic anhydrase I/II (hCA) were systematically assessed. The synthesized compounds demonstrated significant suppression of hCAs. The 4-methoxycarbonyl compound (<b>2a</b>, Ki = 69.74 nM) exhibited a robust inhibitory effect against hCA I compared to the reference medication acetazolamide (AAZ, Ki = 373.46 nM). The 4-dimethylamino compound (<b>2b</b>, K<sub>i</sub> of 120.36 nM) exhibited superior potency compared to AAZ (K<sub>i</sub> of 350.66 nM) against hCA II. 2,4-dinitrobenzylidene (<b>2n</b>, K<sub>i</sub> of 69.18 nM) derivative displayed a remarkable inhibitory effect against AChE compared to tacrine (THA, K<sub>i</sub> of 205.78 nM). Additionally, in silico studies provided insight into the binding interactions enhancing the understanding of their multi-target potential. This study identified compounds with varying affinities for hCA isoenzymes highlighting their potential as effective and selective hCA inhibitors. The reported compounds exhibited significant biological inhibitory potency indicating their potential as a promising lead compound against hCAs and AChE.</p>","PeriodicalId":146,"journal":{"name":"ChemistrySelect","volume":"10 9","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistrySelect","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/slct.202405876","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents the synthesis of various non-sulfonamide acyl hydrazone derivatives intended as multi-target ligands for the treatment of Alzheimer's disease. The derivatives were thoroughly characterized using advanced spectroscopic techniques and their inhibitory activities against key enzymes, acetylcholinesterase (AChE) and human carbonic anhydrase I/II (hCA) were systematically assessed. The synthesized compounds demonstrated significant suppression of hCAs. The 4-methoxycarbonyl compound (2a, Ki = 69.74 nM) exhibited a robust inhibitory effect against hCA I compared to the reference medication acetazolamide (AAZ, Ki = 373.46 nM). The 4-dimethylamino compound (2b, Ki of 120.36 nM) exhibited superior potency compared to AAZ (Ki of 350.66 nM) against hCA II. 2,4-dinitrobenzylidene (2n, Ki of 69.18 nM) derivative displayed a remarkable inhibitory effect against AChE compared to tacrine (THA, Ki of 205.78 nM). Additionally, in silico studies provided insight into the binding interactions enhancing the understanding of their multi-target potential. This study identified compounds with varying affinities for hCA isoenzymes highlighting their potential as effective and selective hCA inhibitors. The reported compounds exhibited significant biological inhibitory potency indicating their potential as a promising lead compound against hCAs and AChE.
期刊介绍:
ChemistrySelect is the latest journal from ChemPubSoc Europe and Wiley-VCH. It offers researchers a quality society-owned journal in which to publish their work in all areas of chemistry. Manuscripts are evaluated by active researchers to ensure they add meaningfully to the scientific literature, and those accepted are processed quickly to ensure rapid online publication.