Influence of non-metal doping and biaxial strain on the photovoltaic characteristics of monolayer 1T-PtSe2

IF 2.5 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Yao Dong, Lu Yang, Jinlin Bao, Huaidong Liu, Yanshen Zhao, Xingbin Wei, Shihang Sun
{"title":"Influence of non-metal doping and biaxial strain on the photovoltaic characteristics of monolayer 1T-PtSe2","authors":"Yao Dong,&nbsp;Lu Yang,&nbsp;Jinlin Bao,&nbsp;Huaidong Liu,&nbsp;Yanshen Zhao,&nbsp;Xingbin Wei,&nbsp;Shihang Sun","doi":"10.1007/s10825-025-02299-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the optoelectronic performance of monolayer 1T-PtSe<sub>2</sub> materials under doping and biaxial tensile strain are investigated, with a focus on the impact of doping with second-period non-metal elements on the optoelectronic properties of the materials. By calculating the formation energy of each dopant system, it was found that the stability of each dopant system is in the order of Ne &lt; F &lt; N &lt; O. The band gap of O-doped system is reduced, and the valence band of the N-doped system crosses the Fermi energy level. The forbidden bandwidth of the monolayer 1T-PtSe<sub>2</sub> decreases with increasing applied biaxial strain and reaches a minimum when the strain reaches − 8%, and the nature of the bandgap remains as an indirect bandgap. When the photon energy reaches 4 eV, the absorption peak of the N-doped system is significantly enhanced. The compressive strain resulted in an elevated absorption peak in the monolayer 1T-PtSe<sub>2</sub> system. This result provides a valuable reference for the potential application of this material in microelectronics and optics.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-025-02299-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the optoelectronic performance of monolayer 1T-PtSe2 materials under doping and biaxial tensile strain are investigated, with a focus on the impact of doping with second-period non-metal elements on the optoelectronic properties of the materials. By calculating the formation energy of each dopant system, it was found that the stability of each dopant system is in the order of Ne < F < N < O. The band gap of O-doped system is reduced, and the valence band of the N-doped system crosses the Fermi energy level. The forbidden bandwidth of the monolayer 1T-PtSe2 decreases with increasing applied biaxial strain and reaches a minimum when the strain reaches − 8%, and the nature of the bandgap remains as an indirect bandgap. When the photon energy reaches 4 eV, the absorption peak of the N-doped system is significantly enhanced. The compressive strain resulted in an elevated absorption peak in the monolayer 1T-PtSe2 system. This result provides a valuable reference for the potential application of this material in microelectronics and optics.

非金属掺杂和双轴应变对单层1T-PtSe2光电特性的影响
本文研究了掺杂和双轴拉伸应变下单层1T-PtSe2材料的光电性能,重点研究了掺杂第二周期非金属元素对材料光电性能的影响。通过计算各掺杂体系的形成能,发现各掺杂体系的稳定性依次为Ne <; F < N <; O。o掺杂体系的带隙减小,n掺杂体系的价带跨越费米能级。单层1T-PtSe2的禁带带宽随外加双轴应变的增加而减小,当应变达到- 8%时禁带带宽达到最小,禁带隙的性质仍然是间接禁带隙。当光子能量达到4 eV时,掺n体系的吸收峰明显增强。压缩应变导致单层1T-PtSe2体系的吸收峰升高。这一结果为该材料在微电子和光学领域的潜在应用提供了有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Electronics
Journal of Computational Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
4.50
自引率
4.80%
发文量
142
审稿时长
>12 weeks
期刊介绍: he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered. In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信