{"title":"Synthesis of C3N4/Fe3O4/NiFe-LDH composite for efficient fabrication of dihydropyrimidinone derivatives","authors":"Maryam Gani, Zahra Rafiee","doi":"10.1007/s11051-025-06230-4","DOIUrl":null,"url":null,"abstract":"<div><p>A novel magnetic mesoporous nanocomposite, carbon nitride (C<sub>3</sub>N<sub>4</sub>)/Fe<sub>3</sub>O<sub>4</sub>/NiFe layered double hydroxide (LDH), as a seriously efficient catalyst, was constructed via the growth of NiFe-LDH on Fe<sub>3</sub>O<sub>4</sub> supported over C<sub>3</sub>N<sub>4</sub> and it was analyzed using fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), energy dispersive X-ray analysis (EDS), field emission scanning electron microscopy (FE-SEM), Brunauer–Emmett–Teller (BET), and simultaneous thermal analysis (STA) techniques. The catalytic performance of the C<sub>3</sub>N<sub>4</sub>/Fe<sub>3</sub>O<sub>4</sub>/NiFe-LDH composite was evaluated in the formation of dihydropyrimidinone derivatives. It has been confirmed that the C<sub>3</sub>N<sub>4</sub>/Fe<sub>3</sub>O<sub>4</sub>/NiFe-LDH composite is very efficient for synthesizing dihydropyrimidinone derivatives. This is accomplished through reacting various aldehydes, ethyl acetoacetate, and urea, resulting in impressive yields of 91 to 96% without the use of solvents at 80 °C. The process requires a catalyst loading of 15 mg and takes between 5 to 15 min, making it an environmentally friendly method. Furthermore, C<sub>3</sub>N<sub>4</sub>/Fe<sub>3</sub>O<sub>4</sub>/NiFe-LDH has shown the ability to be recycled for five cycles.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticle Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11051-025-06230-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A novel magnetic mesoporous nanocomposite, carbon nitride (C3N4)/Fe3O4/NiFe layered double hydroxide (LDH), as a seriously efficient catalyst, was constructed via the growth of NiFe-LDH on Fe3O4 supported over C3N4 and it was analyzed using fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), energy dispersive X-ray analysis (EDS), field emission scanning electron microscopy (FE-SEM), Brunauer–Emmett–Teller (BET), and simultaneous thermal analysis (STA) techniques. The catalytic performance of the C3N4/Fe3O4/NiFe-LDH composite was evaluated in the formation of dihydropyrimidinone derivatives. It has been confirmed that the C3N4/Fe3O4/NiFe-LDH composite is very efficient for synthesizing dihydropyrimidinone derivatives. This is accomplished through reacting various aldehydes, ethyl acetoacetate, and urea, resulting in impressive yields of 91 to 96% without the use of solvents at 80 °C. The process requires a catalyst loading of 15 mg and takes between 5 to 15 min, making it an environmentally friendly method. Furthermore, C3N4/Fe3O4/NiFe-LDH has shown the ability to be recycled for five cycles.
期刊介绍:
The objective of the Journal of Nanoparticle Research is to disseminate knowledge of the physical, chemical and biological phenomena and processes in structures that have at least one lengthscale ranging from molecular to approximately 100 nm (or submicron in some situations), and exhibit improved and novel properties that are a direct result of their small size.
Nanoparticle research is a key component of nanoscience, nanoengineering and nanotechnology.
The focus of the Journal is on the specific concepts, properties, phenomena, and processes related to particles, tubes, layers, macromolecules, clusters and other finite structures of the nanoscale size range. Synthesis, assembly, transport, reactivity, and stability of such structures are considered. Development of in-situ and ex-situ instrumentation for characterization of nanoparticles and their interfaces should be based on new principles for probing properties and phenomena not well understood at the nanometer scale. Modeling and simulation may include atom-based quantum mechanics; molecular dynamics; single-particle, multi-body and continuum based models; fractals; other methods suitable for modeling particle synthesis, assembling and interaction processes. Realization and application of systems, structures and devices with novel functions obtained via precursor nanoparticles is emphasized. Approaches may include gas-, liquid-, solid-, and vacuum-based processes, size reduction, chemical- and bio-self assembly. Contributions include utilization of nanoparticle systems for enhancing a phenomenon or process and particle assembling into hierarchical structures, as well as formulation and the administration of drugs. Synergistic approaches originating from different disciplines and technologies, and interaction between the research providers and users in this field, are encouraged.