Investigation of inhibitive property of hydroxypropyl methylcellulose on acid corrosion of copper using experimental and computational simulation techniques

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Innocent O Arukalam, Ikechukwu N Uzochukwu, Remy Uche, Daniel I Udunwa, Chijioke P Egole, Agha I Ndukwe
{"title":"Investigation of inhibitive property of hydroxypropyl methylcellulose on acid corrosion of copper using experimental and computational simulation techniques","authors":"Innocent O Arukalam,&nbsp;Ikechukwu N Uzochukwu,&nbsp;Remy Uche,&nbsp;Daniel I Udunwa,&nbsp;Chijioke P Egole,&nbsp;Agha I Ndukwe","doi":"10.1007/s12034-024-03381-3","DOIUrl":null,"url":null,"abstract":"<div><p>The inhibitive property of hydroxypropyl methylcellulose (HPC) on acid (1.0 M HCl and 0.5 M H<sub>2</sub>SO<sub>4</sub>) corrosion of copper was investigated using gravimetric, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization and computational simulation techniques. Gravimetric results showed decrease in weight loss in the presence of HPC at room temperature of 25°C. With increase in temperature from 30–60°C, weight gain was observed which indicates that HPC film was adsorbed on the Cu surface. According to impedance measurement results, HPC displayed better inhibition in the presence of HCl (I.E.<sub>Rct</sub>% = 23.99) than in the presence of H<sub>2</sub>SO<sub>4</sub> with 19.98 inhibition efficiency. Potentiodynamic polarization tests showed HPC inhibited HCl solution with I.E.% of 43.69 whereas 19.05 I.E.% was obtained for HPC in H<sub>2</sub>SO<sub>4</sub> acid solution. Nonetheless, HPC acted as a mixed-type inhibitor with predominant cathodic effect. The DFT calculations showed that E<sub>Homo</sub> is − 5.504 eV, while E<sub>Lumo</sub> is 0.859 eV and energy gap is 6.363 eV. These values indicate that HPC inhibitor molecules are highly reactive and can readily transfer as well as accept electrons during copper surface-inhibitor interactions. Molecular dynamics simulation showed the adsorption energy (<i>E</i><sub>ads</sub>) for HPC on copper in the presence of 0.5 M H<sub>2</sub>SO<sub>4</sub> solution was determined to be − 1.277 kcal/mol (− 5.108 kJ/mol), while <i>E</i><sub>ads</sub> for HPC on copper in the presence of 1.0 M HCl solution was − 1.55 kcal/mol (− 6.485 kJ/mol). The higher negative value of <i>E</i><sub>ads</sub> for HPC in the presence of HCl indicates stronger adsorption. Based on the observed results, HPC could be used as corrosion inhibitor for protection against corrosion of copper in 0.5 M H<sub>2</sub>SO<sub>4</sub> acid solution but better in 1.0 M HCl acid solution.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12034-024-03381-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The inhibitive property of hydroxypropyl methylcellulose (HPC) on acid (1.0 M HCl and 0.5 M H2SO4) corrosion of copper was investigated using gravimetric, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization and computational simulation techniques. Gravimetric results showed decrease in weight loss in the presence of HPC at room temperature of 25°C. With increase in temperature from 30–60°C, weight gain was observed which indicates that HPC film was adsorbed on the Cu surface. According to impedance measurement results, HPC displayed better inhibition in the presence of HCl (I.E.Rct% = 23.99) than in the presence of H2SO4 with 19.98 inhibition efficiency. Potentiodynamic polarization tests showed HPC inhibited HCl solution with I.E.% of 43.69 whereas 19.05 I.E.% was obtained for HPC in H2SO4 acid solution. Nonetheless, HPC acted as a mixed-type inhibitor with predominant cathodic effect. The DFT calculations showed that EHomo is − 5.504 eV, while ELumo is 0.859 eV and energy gap is 6.363 eV. These values indicate that HPC inhibitor molecules are highly reactive and can readily transfer as well as accept electrons during copper surface-inhibitor interactions. Molecular dynamics simulation showed the adsorption energy (Eads) for HPC on copper in the presence of 0.5 M H2SO4 solution was determined to be − 1.277 kcal/mol (− 5.108 kJ/mol), while Eads for HPC on copper in the presence of 1.0 M HCl solution was − 1.55 kcal/mol (− 6.485 kJ/mol). The higher negative value of Eads for HPC in the presence of HCl indicates stronger adsorption. Based on the observed results, HPC could be used as corrosion inhibitor for protection against corrosion of copper in 0.5 M H2SO4 acid solution but better in 1.0 M HCl acid solution.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bulletin of Materials Science
Bulletin of Materials Science 工程技术-材料科学:综合
CiteScore
3.40
自引率
5.60%
发文量
209
审稿时长
11.5 months
期刊介绍: The Bulletin of Materials Science is a bi-monthly journal being published by the Indian Academy of Sciences in collaboration with the Materials Research Society of India and the Indian National Science Academy. The journal publishes original research articles, review articles and rapid communications in all areas of materials science. The journal also publishes from time to time important Conference Symposia/ Proceedings which are of interest to materials scientists. It has an International Advisory Editorial Board and an Editorial Committee. The Bulletin accords high importance to the quality of articles published and to keep at a minimum the processing time of papers submitted for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信