Bifunctional electrocatalysis with silk cocoon-shaped CdMn2O4 nanoparticles for Zn–air batteries

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kammari Sasidharachari, Maritoni Buenviaje, Sukeun Yoon
{"title":"Bifunctional electrocatalysis with silk cocoon-shaped CdMn2O4 nanoparticles for Zn–air batteries","authors":"Kammari Sasidharachari,&nbsp;Maritoni Buenviaje,&nbsp;Sukeun Yoon","doi":"10.1007/s12034-024-03389-9","DOIUrl":null,"url":null,"abstract":"<div><p>Morphology-controlled catalyst nanoparticles have attracted significant research interest owing to their fundamental and scientific importance. In particular, their crystallographic orientation dependent properties greatly impact their electrocatalytic activity towards the oxygen reduction and evolution reactions. Herein, a CdMn<sub>2</sub>O<sub>4</sub> catalyst with silk cocoon-shaped particles is synthesised via a solvothermal approach, and its bifunctional electrocatalytic activity in Zn–air batteries is studied. The catalyst is composed of three-dimensionally interconnected nanoparticles, which provide a highly accessible coordination environment around its surface, and a large number of exposed active sites. Compared with commercial 20 wt% Pt/C and IrO<sub>2</sub> catalysts, the CdMn<sub>2</sub>O<sub>4</sub> catalyst exhibits a significantly reduced charge−discharge voltage gap, superior cycling stability and higher round-trip efficiency. Electrochemical redox species are present on the cocoon-shaped catalyst surface without perturbing its structure, and increase the number of reactive sites formed by defective O<sub>2</sub><sup>−</sup> species, thereby providing sufficient structural stability. This work provides a new understanding that can aid in the design of highly efficient bifunctional electrocatalysts and structural engineering of silk cocoon-shaped materials to replace noble-metal catalysts or non-noble spinel electrocatalysts for Zn–air batteries.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12034-024-03389-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Morphology-controlled catalyst nanoparticles have attracted significant research interest owing to their fundamental and scientific importance. In particular, their crystallographic orientation dependent properties greatly impact their electrocatalytic activity towards the oxygen reduction and evolution reactions. Herein, a CdMn2O4 catalyst with silk cocoon-shaped particles is synthesised via a solvothermal approach, and its bifunctional electrocatalytic activity in Zn–air batteries is studied. The catalyst is composed of three-dimensionally interconnected nanoparticles, which provide a highly accessible coordination environment around its surface, and a large number of exposed active sites. Compared with commercial 20 wt% Pt/C and IrO2 catalysts, the CdMn2O4 catalyst exhibits a significantly reduced charge−discharge voltage gap, superior cycling stability and higher round-trip efficiency. Electrochemical redox species are present on the cocoon-shaped catalyst surface without perturbing its structure, and increase the number of reactive sites formed by defective O2 species, thereby providing sufficient structural stability. This work provides a new understanding that can aid in the design of highly efficient bifunctional electrocatalysts and structural engineering of silk cocoon-shaped materials to replace noble-metal catalysts or non-noble spinel electrocatalysts for Zn–air batteries.

Graphical Abstract

蚕茧状CdMn2O4纳米粒子在锌空气电池中的双功能电催化
由于其在基础和科学上的重要性,形貌控制的纳米催化剂引起了人们极大的研究兴趣。特别是晶体取向依赖性极大地影响了它们对氧还原和进化反应的电催化活性。本文采用溶剂热法合成了一种具有蚕茧状颗粒的CdMn2O4催化剂,并研究了其在锌空气电池中的双功能电催化活性。该催化剂由三维互联的纳米颗粒组成,其表面提供了一个高度可达的配位环境,以及大量暴露的活性位点。与20 wt% Pt/C和IrO2催化剂相比,CdMn2O4催化剂具有明显减小的充放电电压间隙、优异的循环稳定性和更高的往返效率。电化学氧化还原物质存在于茧状催化剂表面而不扰动其结构,并增加了缺陷O2−物质形成的反应位点的数量,从而提供了足够的结构稳定性。本研究为高效双功能电催化剂的设计和蚕茧状材料的结构工程提供了新的认识,以取代锌空气电池的贵金属催化剂或非贵金属尖晶石电催化剂。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bulletin of Materials Science
Bulletin of Materials Science 工程技术-材料科学:综合
CiteScore
3.40
自引率
5.60%
发文量
209
审稿时长
11.5 months
期刊介绍: The Bulletin of Materials Science is a bi-monthly journal being published by the Indian Academy of Sciences in collaboration with the Materials Research Society of India and the Indian National Science Academy. The journal publishes original research articles, review articles and rapid communications in all areas of materials science. The journal also publishes from time to time important Conference Symposia/ Proceedings which are of interest to materials scientists. It has an International Advisory Editorial Board and an Editorial Committee. The Bulletin accords high importance to the quality of articles published and to keep at a minimum the processing time of papers submitted for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信