Measurement and Modeling of Initial Quench Development in Nb3Sn Accelerator Magnets

IF 1.7 3区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Ruben Keijzer;Gerard Willering;Piotr Rogacki;Lucio Fiscarelli;Stephan Russenschuck;Marc Dhallé;Herman Ten Kate
{"title":"Measurement and Modeling of Initial Quench Development in Nb3Sn Accelerator Magnets","authors":"Ruben Keijzer;Gerard Willering;Piotr Rogacki;Lucio Fiscarelli;Stephan Russenschuck;Marc Dhallé;Herman Ten Kate","doi":"10.1109/TASC.2025.3540833","DOIUrl":null,"url":null,"abstract":"Accelerator magnets are equipped with voltage taps and, on the test bench, with so-called quench antenna's to monitor the transient effects occurring during a magnet quench. Proper identification and localization of a quench origin is vital for understanding performance issues in Nb<sub>3</sub>Sn accelerator magnets. In this paper, we describe the physical phenomena that occur during the first few milliseconds of a developing quench and how they affect the signals as intercepted with the diagnostic tools. A better understanding of these phenomena allows for better resolution on determination of the quench start location. Measurements from Nb<sub>3</sub>Sn accelerator magnets are compared with a 3D thermal-electric PEEC-FEM model of a Rutherford cable. The voltage measured over the cable shows an accelerating build-up attributed to the transverse quench propagation in the cable cross-section, which is dominated by inductive effects that results in an avalanche of quenching strands. A slow-down in the voltage build-up then indicates the point at which all strands in the cable cross-section have quenched. This phase of the quench involves a significant current redistribution that creates a magnetic dipole moment picked up by a quench antenna. The harmonic quench antenna used in this work is used to reconstruct the location, magnitude, and direction of this dipole moment, which strongly depends on the start location of the quench in the cable cross-section, on the inter-strand contact resistances and on the magneto-resistance of the copper. It is shown how the quench start location in the cable cross-section can be determined from the time integral of the reconstructed dipole moment.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"35 5","pages":"1-7"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10897971/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Accelerator magnets are equipped with voltage taps and, on the test bench, with so-called quench antenna's to monitor the transient effects occurring during a magnet quench. Proper identification and localization of a quench origin is vital for understanding performance issues in Nb3Sn accelerator magnets. In this paper, we describe the physical phenomena that occur during the first few milliseconds of a developing quench and how they affect the signals as intercepted with the diagnostic tools. A better understanding of these phenomena allows for better resolution on determination of the quench start location. Measurements from Nb3Sn accelerator magnets are compared with a 3D thermal-electric PEEC-FEM model of a Rutherford cable. The voltage measured over the cable shows an accelerating build-up attributed to the transverse quench propagation in the cable cross-section, which is dominated by inductive effects that results in an avalanche of quenching strands. A slow-down in the voltage build-up then indicates the point at which all strands in the cable cross-section have quenched. This phase of the quench involves a significant current redistribution that creates a magnetic dipole moment picked up by a quench antenna. The harmonic quench antenna used in this work is used to reconstruct the location, magnitude, and direction of this dipole moment, which strongly depends on the start location of the quench in the cable cross-section, on the inter-strand contact resistances and on the magneto-resistance of the copper. It is shown how the quench start location in the cable cross-section can be determined from the time integral of the reconstructed dipole moment.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Applied Superconductivity
IEEE Transactions on Applied Superconductivity 工程技术-工程:电子与电气
CiteScore
3.50
自引率
33.30%
发文量
650
审稿时长
2.3 months
期刊介绍: IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信