Applications for the EM-Based Classifier in Radar Sensor Network

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Linjie Yan;Mohammed Jahangir;Michail Antoniou;Chengpeng Hao;Carmine Clemente;Danilo Orlando
{"title":"Applications for the EM-Based Classifier in Radar Sensor Network","authors":"Linjie Yan;Mohammed Jahangir;Michail Antoniou;Chengpeng Hao;Carmine Clemente;Danilo Orlando","doi":"10.1109/LSENS.2025.3540732","DOIUrl":null,"url":null,"abstract":"In this letter, we focus on the application and analysis of the new model-based clustering architectures developed in our recent paper, where the analysis is limited to synthetic simulation results, to data collected by a real radar sensor. Specifically, a more comprehensive analysis of the proposed schemes is carried out in challenging real operating scenarios where the real measurements of multiple moving targets are not perfectly matched with the design assumptions due to real-world effects. Moreover, a new initialization procedure is introduced that accounts for multiple target velocities and the radar sampling time interval required by the specific application. Such a procedure is capable of providing the expectation-maximization (EM) procedure with reliable initial parameter values. The performance assessment confirms the effectiveness of these EM-based clustering algorithms not only on synthetic data, as observed in our companion paper, but also over real-recorded data and in comparison with suitable competitors.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 3","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10892014/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this letter, we focus on the application and analysis of the new model-based clustering architectures developed in our recent paper, where the analysis is limited to synthetic simulation results, to data collected by a real radar sensor. Specifically, a more comprehensive analysis of the proposed schemes is carried out in challenging real operating scenarios where the real measurements of multiple moving targets are not perfectly matched with the design assumptions due to real-world effects. Moreover, a new initialization procedure is introduced that accounts for multiple target velocities and the radar sampling time interval required by the specific application. Such a procedure is capable of providing the expectation-maximization (EM) procedure with reliable initial parameter values. The performance assessment confirms the effectiveness of these EM-based clustering algorithms not only on synthetic data, as observed in our companion paper, but also over real-recorded data and in comparison with suitable competitors.
基于电磁的分类器在雷达传感器网络中的应用
在这封信中,我们专注于我们最近论文中开发的基于模型的新聚类架构的应用和分析,其中分析仅限于合成仿真结果,以及由真实雷达传感器收集的数据。具体而言,在具有挑战性的实际操作场景中,由于现实世界的影响,多个运动目标的实际测量值与设计假设不完全匹配,对所提出的方案进行了更全面的分析。此外,还引入了一种新的初始化程序,该程序考虑了多个目标速度和特定应用所需的雷达采样时间间隔。该过程能够为期望最大化(EM)过程提供可靠的初始参数值。性能评估证实了这些基于em的聚类算法的有效性,不仅在合成数据上,而且在真实记录的数据上,以及与合适的竞争对手的比较中,都是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信