Microwave Reflectometry for Online Monitoring of Metal Powder Used in Laser Powder Bed Fusion Additive Manufacturing

Farzaneh Ahmadi;Reza Zoughi
{"title":"Microwave Reflectometry for Online Monitoring of Metal Powder Used in Laser Powder Bed Fusion Additive Manufacturing","authors":"Farzaneh Ahmadi;Reza Zoughi","doi":"10.1109/OJIM.2025.3540122","DOIUrl":null,"url":null,"abstract":"This study presents the results of using a millimeter-wave reflectometer system, operating at 150 GHz, for demonstrating the basic efficacy of measuring electromagnetic scattering of metal powder used in laser powder bed fusion (LPBF) additive manufacturing (AM). Metal spatter (spatial) properties—particles ejected during laser interaction with metal powder—are potential indicators of process deviations (from a prescribed manner) or defect formation in a printed part. Electromagnetic modeling of scattering properties of metal powder has shown to be a potentially viable tool for assessing metal powder cloud spatial distribution and other properties. This work takes the next natural step by measuring the scattering properties of a cloud of metal powder. This investigation begins with samples of stationary powder, demonstrating a strong correlation between packing density and the measured output voltage of the reflectometer. The study progresses into detecting the flow of relatively large metal particles (i.e., solder balls) in air and measuring responses of flowing metal powder blown inside a nitrogen-filled chamber. Results crucially confirm that this method can distinguish a cloud of metal powder from the baseline condition where no powder is present. While promising, this investigation represents an initial step in the long journey toward optimizing millimeter-wave methods for integration into real-world LPBF AM systems.","PeriodicalId":100630,"journal":{"name":"IEEE Open Journal of Instrumentation and Measurement","volume":"4 ","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10879018","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Instrumentation and Measurement","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10879018/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents the results of using a millimeter-wave reflectometer system, operating at 150 GHz, for demonstrating the basic efficacy of measuring electromagnetic scattering of metal powder used in laser powder bed fusion (LPBF) additive manufacturing (AM). Metal spatter (spatial) properties—particles ejected during laser interaction with metal powder—are potential indicators of process deviations (from a prescribed manner) or defect formation in a printed part. Electromagnetic modeling of scattering properties of metal powder has shown to be a potentially viable tool for assessing metal powder cloud spatial distribution and other properties. This work takes the next natural step by measuring the scattering properties of a cloud of metal powder. This investigation begins with samples of stationary powder, demonstrating a strong correlation between packing density and the measured output voltage of the reflectometer. The study progresses into detecting the flow of relatively large metal particles (i.e., solder balls) in air and measuring responses of flowing metal powder blown inside a nitrogen-filled chamber. Results crucially confirm that this method can distinguish a cloud of metal powder from the baseline condition where no powder is present. While promising, this investigation represents an initial step in the long journey toward optimizing millimeter-wave methods for integration into real-world LPBF AM systems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信