{"title":"All-Fiber Broadband Photon Pair Generation in Dispersion Flattened Highly Non-Linear Fibers","authors":"Anadi Agnihotri;Pradeep Kumar Krishnamurthy","doi":"10.1109/JPHOT.2025.3542592","DOIUrl":null,"url":null,"abstract":"We demonstrate an all-fiber broadband photon pair source based on four wave mixing (FWM) process in dispersion flattened highly non-linear fiber (DF-HNLF). The fiber exhibits a zero dispersion slope near 1550 nm, allowing phase-matched FWM over entire S, C, and L bands and thus efficient generation of signal and idler photons. A comparative theoretical study between conventional dispersion-shifted fiber (DSF) and DF-HNLF highlights the spectral range differences in the generation of photon pairs. We measure coincidence counts at three different sets of wavelengths. To study the effects of Raman scattering, which acts as noise source in these types of fibers, we calculate the correlation <inline-formula><tex-math>$g^{(2)}(\\tau)$</tex-math></inline-formula> at different pump powers. We use stimulated emission tomography to characterize the generation of photon pairs across the S, C, and L bands. We show that DF-HNLF is an ideal medium for generating correlated photons over a broad spectral range (<inline-formula><tex-math>$>\\!\\!100\\,\\text{nm}$</tex-math></inline-formula>), making it suitable for frequency-multiplexed quantum communication systems. We estimate the photon pair generation efficiency to be 0.05 <inline-formula><tex-math>$\\text{mW}^{-2}/\\text{pulse}$</tex-math></inline-formula>.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 2","pages":"1-7"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10890974","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10890974/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We demonstrate an all-fiber broadband photon pair source based on four wave mixing (FWM) process in dispersion flattened highly non-linear fiber (DF-HNLF). The fiber exhibits a zero dispersion slope near 1550 nm, allowing phase-matched FWM over entire S, C, and L bands and thus efficient generation of signal and idler photons. A comparative theoretical study between conventional dispersion-shifted fiber (DSF) and DF-HNLF highlights the spectral range differences in the generation of photon pairs. We measure coincidence counts at three different sets of wavelengths. To study the effects of Raman scattering, which acts as noise source in these types of fibers, we calculate the correlation $g^{(2)}(\tau)$ at different pump powers. We use stimulated emission tomography to characterize the generation of photon pairs across the S, C, and L bands. We show that DF-HNLF is an ideal medium for generating correlated photons over a broad spectral range ($>\!\!100\,\text{nm}$), making it suitable for frequency-multiplexed quantum communication systems. We estimate the photon pair generation efficiency to be 0.05 $\text{mW}^{-2}/\text{pulse}$.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.