Signage-Aware Exploration in Open World Using Venue Maps

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Chang Chen;Liang Lu;Lei Yang;Yinqiang Zhang;Yizhou Chen;Ruixing Jia;Jia Pan
{"title":"Signage-Aware Exploration in Open World Using Venue Maps","authors":"Chang Chen;Liang Lu;Lei Yang;Yinqiang Zhang;Yizhou Chen;Ruixing Jia;Jia Pan","doi":"10.1109/LRA.2025.3540390","DOIUrl":null,"url":null,"abstract":"Current exploration methods struggle to search for shops or restaurants in unknown open-world environments due to the lack of prior knowledge. Humans can leverage venue maps that offer valuable scene priors to aid exploration planning by correlating the signage in the scene with landmark names on the map. However, arbitrary shapes and styles of the texts on signage, along with multi-view inconsistencies, pose significant challenges for robots to recognize them accurately. Additionally, discrepancies between real-world environments and venue maps hinder the integration of text-level information into the planners. This paper introduces a novel signage-aware exploration system to address these challenges, enabling the robots to utilize venue maps effectively. We propose a signage understanding method that accurately detects and recognizes the texts on signage using a diffusion-based text instance retrieval method combined with a 2D-to-3D semantic fusion strategy. Furthermore, we design a venue map-guided exploration-exploitation planner that balances exploration in unknown regions using directional heuristics derived from venue maps and exploitation to get close and adjust orientation for better recognition. Experiments in large-scale shopping malls demonstrate our method's superior signage recognition performance and search efficiency, surpassing state-of-the-art text spotting methods and traditional exploration approaches.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 4","pages":"3414-3421"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10878474/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Current exploration methods struggle to search for shops or restaurants in unknown open-world environments due to the lack of prior knowledge. Humans can leverage venue maps that offer valuable scene priors to aid exploration planning by correlating the signage in the scene with landmark names on the map. However, arbitrary shapes and styles of the texts on signage, along with multi-view inconsistencies, pose significant challenges for robots to recognize them accurately. Additionally, discrepancies between real-world environments and venue maps hinder the integration of text-level information into the planners. This paper introduces a novel signage-aware exploration system to address these challenges, enabling the robots to utilize venue maps effectively. We propose a signage understanding method that accurately detects and recognizes the texts on signage using a diffusion-based text instance retrieval method combined with a 2D-to-3D semantic fusion strategy. Furthermore, we design a venue map-guided exploration-exploitation planner that balances exploration in unknown regions using directional heuristics derived from venue maps and exploitation to get close and adjust orientation for better recognition. Experiments in large-scale shopping malls demonstrate our method's superior signage recognition performance and search efficiency, surpassing state-of-the-art text spotting methods and traditional exploration approaches.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信