Gabriel da Silva Lima;Vinícius Rosa Cota;Wallace Moreira Bessa
{"title":"Intelligent Control to Suppress Epileptic Seizures in the Amygdala: In Silico Investigation Using a Network of Izhikevich Neurons","authors":"Gabriel da Silva Lima;Vinícius Rosa Cota;Wallace Moreira Bessa","doi":"10.1109/TNSRE.2025.3543756","DOIUrl":null,"url":null,"abstract":"Closed-loop electricalstimulation of brain structures is one of the most promising techniques to suppress epileptic seizures in drug-resistant refractory patients who are also ineligible to ablative neurosurgery. In this work, an intelligent controller is presented to block the aberrant activity of a network of Izhikevich neurons of three different types, used here to model the electrical activity of the basolateral amygdala during ictogenesis, i.e. its transition from asynchronous to hypersynchronous state. A Lyapunov-based nonlinear scheme is used as the main framework for the proposed controller. To avoid the issue of accessing each neuron individually, local field potentials are used to gain insight into the overall state of the Izhikevich network. Artificial neural networks are integrated into the control scheme to manage unknown dynamics and disturbances caused by brain electrical activity that are not accounted for in the model. Four different cases of ictogenesis induction were tested. The results show the efficacy of the proposed control strategy to suppress epileptic seizures and suggest its capability to address both patient-specific and patient-to-patient variability.","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"33 ","pages":"868-880"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10892294","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10892294/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Closed-loop electricalstimulation of brain structures is one of the most promising techniques to suppress epileptic seizures in drug-resistant refractory patients who are also ineligible to ablative neurosurgery. In this work, an intelligent controller is presented to block the aberrant activity of a network of Izhikevich neurons of three different types, used here to model the electrical activity of the basolateral amygdala during ictogenesis, i.e. its transition from asynchronous to hypersynchronous state. A Lyapunov-based nonlinear scheme is used as the main framework for the proposed controller. To avoid the issue of accessing each neuron individually, local field potentials are used to gain insight into the overall state of the Izhikevich network. Artificial neural networks are integrated into the control scheme to manage unknown dynamics and disturbances caused by brain electrical activity that are not accounted for in the model. Four different cases of ictogenesis induction were tested. The results show the efficacy of the proposed control strategy to suppress epileptic seizures and suggest its capability to address both patient-specific and patient-to-patient variability.
期刊介绍:
Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.