Seungmin Hong , Jae Kwon Seo , Chaeyeon Ha , Seung-Min Oh , Young-Jun Kim
{"title":"Dry-processed bimodal cathode with single-crystalline particles for high-density and high-performance lithium-ion batteries","authors":"Seungmin Hong , Jae Kwon Seo , Chaeyeon Ha , Seung-Min Oh , Young-Jun Kim","doi":"10.1016/j.jpowsour.2025.236621","DOIUrl":null,"url":null,"abstract":"<div><div>The development of high-performance and environmentally friendly cathodes is crucial for advancing the lithium-ion battery (LIB) technology. This study aims to solve the problems associated with the conventional wet electrode fabrication that uses a N-methyl-2-pyrrolidone solvent by introducing a solvent-free electrode process employing polytetrafluoroethylene binder to fabricate cathodes with Ni-rich LiNi<sub>1-x-y-z</sub>Co<sub>x</sub>Mn<sub>y</sub>Al<sub>z</sub>O<sub>2</sub> active materials. In addition, to enhance electrode density, this study explores bimodal active materials composed of large polycrystalline (PC) and small single crystalline (SC) particles mixed in an optimal ratio. By employing bimodal cathode active materials, electrode density is easily enhanced during processing while minimizing the pulverization of the cathode materials. Furthermore, the inclusion of small SC particles promotes a more uniform dispersion of conductive additives in the electrodes and improves cell cycling performance. As a result, the full cell using bimodal materials demonstrates superior capacity retention of 80.1 % (146.4 mAh g<sup>−1</sup>) compared to 64.6 % (117.3 mAh g<sup>−1</sup>) for the cell with PC materials after 300 cycles. This study provides a foundation for advancing LIB cathode research and industrial applications, paving the way for future high-energy-density cathode designs.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"638 ","pages":"Article 236621"},"PeriodicalIF":7.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775325004574","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The development of high-performance and environmentally friendly cathodes is crucial for advancing the lithium-ion battery (LIB) technology. This study aims to solve the problems associated with the conventional wet electrode fabrication that uses a N-methyl-2-pyrrolidone solvent by introducing a solvent-free electrode process employing polytetrafluoroethylene binder to fabricate cathodes with Ni-rich LiNi1-x-y-zCoxMnyAlzO2 active materials. In addition, to enhance electrode density, this study explores bimodal active materials composed of large polycrystalline (PC) and small single crystalline (SC) particles mixed in an optimal ratio. By employing bimodal cathode active materials, electrode density is easily enhanced during processing while minimizing the pulverization of the cathode materials. Furthermore, the inclusion of small SC particles promotes a more uniform dispersion of conductive additives in the electrodes and improves cell cycling performance. As a result, the full cell using bimodal materials demonstrates superior capacity retention of 80.1 % (146.4 mAh g−1) compared to 64.6 % (117.3 mAh g−1) for the cell with PC materials after 300 cycles. This study provides a foundation for advancing LIB cathode research and industrial applications, paving the way for future high-energy-density cathode designs.
期刊介绍:
The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells.
Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include:
• Portable electronics
• Electric and Hybrid Electric Vehicles
• Uninterruptible Power Supply (UPS) systems
• Storage of renewable energy
• Satellites and deep space probes
• Boats and ships, drones and aircrafts
• Wearable energy storage systems