Garcinol promotes wound healing in diabetic mice by regulating inflammation and NLRP3 inflammasome-mediated pyroptosis via the PI3K/Akt/NF-κB pathway

IF 4.8 2区 医学 Q2 IMMUNOLOGY
Zihao Li , Kai Lin , Yilong Wang , Junnan Mao , Yihu Yin , Zi Li , Fulin Wang , Xiangtao Zeng , Qiubo Li , Xuan Wang , Zhi Li , Ronghui Miao , Cai Lin , Cong Mao
{"title":"Garcinol promotes wound healing in diabetic mice by regulating inflammation and NLRP3 inflammasome-mediated pyroptosis via the PI3K/Akt/NF-κB pathway","authors":"Zihao Li ,&nbsp;Kai Lin ,&nbsp;Yilong Wang ,&nbsp;Junnan Mao ,&nbsp;Yihu Yin ,&nbsp;Zi Li ,&nbsp;Fulin Wang ,&nbsp;Xiangtao Zeng ,&nbsp;Qiubo Li ,&nbsp;Xuan Wang ,&nbsp;Zhi Li ,&nbsp;Ronghui Miao ,&nbsp;Cai Lin ,&nbsp;Cong Mao","doi":"10.1016/j.intimp.2025.114352","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetic wounds, characterized by chronic inflammation and impaired angiogenesis, often lead to severe complications such as persistent infections and an elevated risk of amputation, significantly affecting a patient's quality of life. Garcinol, a polyisoprenylated benzophenone derived from the rind of <em>Garcinia indica</em>, exhibits potent anti-inflammatory, angiogenic, and antioxidant effects in various disease models. However, its potential to enhance diabetic wound healing remains unclear. In this research, we firstly used network pharmacology analysis to identify the potential targets of Garcinol in treating diabetic wounds. Cellular study results revealed that Garcinol therapy alleviated high glucose-induced cellular dysfunction and increased the angiogenic potential of human umbilical vein endothelial cells (HUVECs). Additionally, Garcinol substantially downregulated the levels of inflammatory cytokines secreted by macrophages through inhibiting the PI3K/Akt/NF-κB signaling pathway, which was further validated using the PI3K/Akt agonist 740 Y<img>P. Furthermore, inhibiting PI3K signaling also resulted in a marked reduction of NLRP3 inflammasome-mediated pyroptosis in macrophages compared to control. In vivo study using a full-thickness diabetic wound model confirmed that Garcinol treatment promoted diabetic wound healing by improving angiogenesis, inhibiting inflammation and pyroptosis, whereas the addition of 740 Y<img>P reduced the beneficial effects of Garcinol. Overall, our findings suggested that Garcinol enhanced diabetic wound healing via its anti-inflammatory ability, suppression of pyroptosis, and enhancement of angiogenesis. These results highlight the potential of Garcinol as a therapeutic agent for diabetic wounds.</div></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"151 ","pages":"Article 114352"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156757692500342X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetic wounds, characterized by chronic inflammation and impaired angiogenesis, often lead to severe complications such as persistent infections and an elevated risk of amputation, significantly affecting a patient's quality of life. Garcinol, a polyisoprenylated benzophenone derived from the rind of Garcinia indica, exhibits potent anti-inflammatory, angiogenic, and antioxidant effects in various disease models. However, its potential to enhance diabetic wound healing remains unclear. In this research, we firstly used network pharmacology analysis to identify the potential targets of Garcinol in treating diabetic wounds. Cellular study results revealed that Garcinol therapy alleviated high glucose-induced cellular dysfunction and increased the angiogenic potential of human umbilical vein endothelial cells (HUVECs). Additionally, Garcinol substantially downregulated the levels of inflammatory cytokines secreted by macrophages through inhibiting the PI3K/Akt/NF-κB signaling pathway, which was further validated using the PI3K/Akt agonist 740 YP. Furthermore, inhibiting PI3K signaling also resulted in a marked reduction of NLRP3 inflammasome-mediated pyroptosis in macrophages compared to control. In vivo study using a full-thickness diabetic wound model confirmed that Garcinol treatment promoted diabetic wound healing by improving angiogenesis, inhibiting inflammation and pyroptosis, whereas the addition of 740 YP reduced the beneficial effects of Garcinol. Overall, our findings suggested that Garcinol enhanced diabetic wound healing via its anti-inflammatory ability, suppression of pyroptosis, and enhancement of angiogenesis. These results highlight the potential of Garcinol as a therapeutic agent for diabetic wounds.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.40
自引率
3.60%
发文量
935
审稿时长
53 days
期刊介绍: International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome. The subject material appropriate for submission includes: • Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders. • Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state. • Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses. • Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action. • Agents that activate genes or modify transcription and translation within the immune response. • Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active. • Production, function and regulation of cytokines and their receptors. • Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信