{"title":"An integrated kirigami-patterned skin patch for multiplexed detection of inflammatory biomarkers along with transdermal drug delivery","authors":"Tanzila Noushin , Nafize Ishtiaque Hossain , Rhythem Tahrin , Md Najmul Islam , Shawana Tabassum","doi":"10.1016/j.sbsr.2025.100772","DOIUrl":null,"url":null,"abstract":"<div><div>Detecting, monitoring, and managing chronic pain levels in real-time remains a critical and challenging aspect of medical practice. Chronic pain is associated with an increased production of inflammatory biomarkers, such as Interleukin-6 and Interleukin-10. Accurately detecting the levels of these biomarkers with a highly sensitive sensor can facilitate real-time monitoring of pain severity and enable the administration of appropriate medication based on the patient's needs. In this context, transdermal drug delivery offers a significant advantage in pain management by delivering targeted opioids, such as Fentanyl, to alleviate chronic pain in a non-invasive and long-term manner. This work presents a kirigami-patterned skin patch that combines multiplexed sensors with a drug delivery module to detect inflammatory biomarker levels in sweat with high sensitivity and precision, while also enabling on-demand drug delivery for pain relief. By correcting response variations caused by changes in body temperature and sweat pH, the device ensures accurate sensing while maintaining strain-insensitive performance—an essential feature for wearable sensors. This system has the potential to significantly impact healthcare by providing an innovative, reliable solution for chronic pain management.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"47 ","pages":"Article 100772"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180425000388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Detecting, monitoring, and managing chronic pain levels in real-time remains a critical and challenging aspect of medical practice. Chronic pain is associated with an increased production of inflammatory biomarkers, such as Interleukin-6 and Interleukin-10. Accurately detecting the levels of these biomarkers with a highly sensitive sensor can facilitate real-time monitoring of pain severity and enable the administration of appropriate medication based on the patient's needs. In this context, transdermal drug delivery offers a significant advantage in pain management by delivering targeted opioids, such as Fentanyl, to alleviate chronic pain in a non-invasive and long-term manner. This work presents a kirigami-patterned skin patch that combines multiplexed sensors with a drug delivery module to detect inflammatory biomarker levels in sweat with high sensitivity and precision, while also enabling on-demand drug delivery for pain relief. By correcting response variations caused by changes in body temperature and sweat pH, the device ensures accurate sensing while maintaining strain-insensitive performance—an essential feature for wearable sensors. This system has the potential to significantly impact healthcare by providing an innovative, reliable solution for chronic pain management.
期刊介绍:
Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies.
The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.