Yitong Zhou , Menghui Liu , Chuandong He , Jiayuan Lin , Yanlv Chen , Mingyu Yu , Yuhan Jiang , Xin Peng
{"title":"Innovative liquid embolic agents based on deep eutectic solvent: Rapid gelation in situ via solvent exchange with water for endovascular embolization","authors":"Yitong Zhou , Menghui Liu , Chuandong He , Jiayuan Lin , Yanlv Chen , Mingyu Yu , Yuhan Jiang , Xin Peng","doi":"10.1016/j.bioactmat.2025.02.037","DOIUrl":null,"url":null,"abstract":"<div><div>Current liquid embolic agents face several challenges, including poor biocompatibility and vascular recanalization. Herein, we propose an innovative liquid embolic agent composed of a coenzyme-based polymer (poly lipoic acid, PLA) and a biocompatible solvent (deep eutectic solvent, DES). The agent undergoes phase transformation to form a stable hydrogel in situ through solvent exchange with water, thereby enabling safe and effective embolization. First, DES is obtained by heating a mixture of choline chloride (ChCl) and glycerol (Gly). Subsequently, lipoic acid (LA) is incorporated into the DES and heated to produce the PLA/DES complex. Owing to the strong hydrogen bonding between the DES and PLA, the DES acts as a solvent while also inhibiting PLA depolymerization. Upon contact with blood, most of the DES exchange with water, whereas some amount of ChCl integrates within the PLA via strong hydrogen bonding. This hydrogen bonding not only prevents PLA depolymerization but also reinforces the PLA network, resulting in a stable PLA hydrogel rather than depolymerized LA monomers. Furthermore, liquid-metal (LM) nanoparticles are incorporated to fabricate radiopaque PLA/LM/DES. PLA/LM/DES shows better in vitro hemocompatibility and cytocompatibility, milder inflammatory response in a rat model, and more effective and safer embolization in a rabbit model than a commercial embolic agent (Onyx). Thus, this work provides an innovative liquid embolic agent and broadens the biomedical applications of DES.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"48 ","pages":"Pages 550-563"},"PeriodicalIF":18.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X25000933","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Current liquid embolic agents face several challenges, including poor biocompatibility and vascular recanalization. Herein, we propose an innovative liquid embolic agent composed of a coenzyme-based polymer (poly lipoic acid, PLA) and a biocompatible solvent (deep eutectic solvent, DES). The agent undergoes phase transformation to form a stable hydrogel in situ through solvent exchange with water, thereby enabling safe and effective embolization. First, DES is obtained by heating a mixture of choline chloride (ChCl) and glycerol (Gly). Subsequently, lipoic acid (LA) is incorporated into the DES and heated to produce the PLA/DES complex. Owing to the strong hydrogen bonding between the DES and PLA, the DES acts as a solvent while also inhibiting PLA depolymerization. Upon contact with blood, most of the DES exchange with water, whereas some amount of ChCl integrates within the PLA via strong hydrogen bonding. This hydrogen bonding not only prevents PLA depolymerization but also reinforces the PLA network, resulting in a stable PLA hydrogel rather than depolymerized LA monomers. Furthermore, liquid-metal (LM) nanoparticles are incorporated to fabricate radiopaque PLA/LM/DES. PLA/LM/DES shows better in vitro hemocompatibility and cytocompatibility, milder inflammatory response in a rat model, and more effective and safer embolization in a rabbit model than a commercial embolic agent (Onyx). Thus, this work provides an innovative liquid embolic agent and broadens the biomedical applications of DES.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.