Praveen Kumar Kanti , Deepthi Jayan K. , Jhilmil Swapnalin , V. Vicki Wanatasanappan
{"title":"Advancements and prospects of MXenes in emerging solar cell technologies","authors":"Praveen Kumar Kanti , Deepthi Jayan K. , Jhilmil Swapnalin , V. Vicki Wanatasanappan","doi":"10.1016/j.solmat.2025.113540","DOIUrl":null,"url":null,"abstract":"<div><div>The global shift toward renewable energy underscores the importance of solar energy as a sustainable, emission-free solution. While traditional materials like silicon and indium tin oxide face challenges such as high costs and environmental concerns, MXenes—two-dimensional transition metal carbides/nitrides—offer a promising alternative. Their high electrical conductivity, chemical stability, and mechanical flexibility make MXenes ideal for roles in transparent conductive electrodes (TCEs), electron transport layers (ETLs), and hole transport layers (HTLs). MXenes enhance the performance, efficiency, and stability of solar cells, including perovskite, tandem, organic, quantum dot, and dye-sensitized types, by improving charge transfer and reducing recombination. This review highlights recent advancements in MXene applications across emerging solar technologies, emphasizing their potential to drive innovation and sustainability in solar energy systems through ongoing advancements in synthesis and optimization.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"285 ","pages":"Article 113540"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825001412","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The global shift toward renewable energy underscores the importance of solar energy as a sustainable, emission-free solution. While traditional materials like silicon and indium tin oxide face challenges such as high costs and environmental concerns, MXenes—two-dimensional transition metal carbides/nitrides—offer a promising alternative. Their high electrical conductivity, chemical stability, and mechanical flexibility make MXenes ideal for roles in transparent conductive electrodes (TCEs), electron transport layers (ETLs), and hole transport layers (HTLs). MXenes enhance the performance, efficiency, and stability of solar cells, including perovskite, tandem, organic, quantum dot, and dye-sensitized types, by improving charge transfer and reducing recombination. This review highlights recent advancements in MXene applications across emerging solar technologies, emphasizing their potential to drive innovation and sustainability in solar energy systems through ongoing advancements in synthesis and optimization.
期刊介绍:
Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.