High entropy oxide as an efficient electrocatalyst of liquid-solid conversion processes in lithium‑sulfur batteries

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS
Yuehan Hao , Yiqian Li , Usman Ali , Yuan Fang , Zhanshuang Jin , Lingyu Zhang , Lu Li , Bingqiu Liu , Chungang Wang
{"title":"High entropy oxide as an efficient electrocatalyst of liquid-solid conversion processes in lithium‑sulfur batteries","authors":"Yuehan Hao ,&nbsp;Yiqian Li ,&nbsp;Usman Ali ,&nbsp;Yuan Fang ,&nbsp;Zhanshuang Jin ,&nbsp;Lingyu Zhang ,&nbsp;Lu Li ,&nbsp;Bingqiu Liu ,&nbsp;Chungang Wang","doi":"10.1016/j.est.2025.116040","DOIUrl":null,"url":null,"abstract":"<div><div>The distorted lattice effect of high-entropy oxides imparts them with high conductivity, facilitating the efficient transport of electrons and ions. Moreover, the high-entropy oxides exhibit high catalytic conversion activity towards lithium polysulfides (LiPSs) attribute to the synergies among diverse metal cations, and the inherent complex surface can also provide almost continuous adsorption energy. Herein, we synthesized nano-sized HEO through a facile thermal evaporation method for use as a separator modifier in lithium‑sulfur (Li<img>S) batteries. The cell with HEO//PP separator exhibits remarkable cycling stability, retaining 951.5mAh g<sup>−1</sup> after 1000 cycles at 1.0C. The exceptional electrochemical performance of the material demonstrates its promising potential for practical applications in Li<img>S batteries.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"115 ","pages":"Article 116040"},"PeriodicalIF":8.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X25007534","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The distorted lattice effect of high-entropy oxides imparts them with high conductivity, facilitating the efficient transport of electrons and ions. Moreover, the high-entropy oxides exhibit high catalytic conversion activity towards lithium polysulfides (LiPSs) attribute to the synergies among diverse metal cations, and the inherent complex surface can also provide almost continuous adsorption energy. Herein, we synthesized nano-sized HEO through a facile thermal evaporation method for use as a separator modifier in lithium‑sulfur (LiS) batteries. The cell with HEO//PP separator exhibits remarkable cycling stability, retaining 951.5mAh g−1 after 1000 cycles at 1.0C. The exceptional electrochemical performance of the material demonstrates its promising potential for practical applications in LiS batteries.

Abstract Image

高熵氧化物作为锂硫电池液固转化过程的高效电催化剂
高熵氧化物的畸变晶格效应使其具有高导电性,有利于电子和离子的高效传递。此外,由于不同金属阳离子之间的协同作用,高熵氧化物对锂多硫化物(LiPSs)表现出较高的催化转化活性,其固有的复杂表面也可以提供几乎连续的吸附能量。在这里,我们通过一种简单的热蒸发方法合成了纳米级HEO,用于锂硫(li -硫)电池的分离器改性剂。采用HEO//PP隔板的电池在1.0℃下循环1000次后仍能保持951.5mAh g−1的稳定性。该材料优异的电化学性能显示了其在锂离子电池中的实际应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信