{"title":"Comprehensive analysis of forced convection heat transfer enhanced by metal foam with pore density gradient structure","authors":"Yifan Wang, Xinglong Ma, Zhiwei Ouyang, Shen Liang","doi":"10.1016/j.solmat.2025.113549","DOIUrl":null,"url":null,"abstract":"<div><div>Metal foam, characterized by its large specific surface area, remarkable thermal and mechanical properties, is often used for heat dissipation in solar panels and solar energy storage systems. To address the pressure drop associated with the application of metal foam, eight foam metal composite structures with different pore gradient structures were developed. This study used computational fluid dynamics to analyze the heat transfer performance of structures with identical porosity but varying gradients. Results showed that gradient structures significantly reduce flow resistance. When high porosity metal foam occupies 20 %–80 % of the heat exchange section, the average pressure drop decreases by 17.2 %, 13.0 %, 8.7 %, and 4.7 % compared to uniform high porosity metal foam. The optimal configuration is 20 % low porosity and 80 % high porosity, with airflow performing better in the negative gradient direction. Practically, combining 10PPI and 20PPI allows for choosing either 20 % low porosity with 80 % high porosity or 40 % low porosity with 60 % high porosity. This study may offer a novel approach for heat exchange in solar energy applications.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"285 ","pages":"Article 113549"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825001503","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Metal foam, characterized by its large specific surface area, remarkable thermal and mechanical properties, is often used for heat dissipation in solar panels and solar energy storage systems. To address the pressure drop associated with the application of metal foam, eight foam metal composite structures with different pore gradient structures were developed. This study used computational fluid dynamics to analyze the heat transfer performance of structures with identical porosity but varying gradients. Results showed that gradient structures significantly reduce flow resistance. When high porosity metal foam occupies 20 %–80 % of the heat exchange section, the average pressure drop decreases by 17.2 %, 13.0 %, 8.7 %, and 4.7 % compared to uniform high porosity metal foam. The optimal configuration is 20 % low porosity and 80 % high porosity, with airflow performing better in the negative gradient direction. Practically, combining 10PPI and 20PPI allows for choosing either 20 % low porosity with 80 % high porosity or 40 % low porosity with 60 % high porosity. This study may offer a novel approach for heat exchange in solar energy applications.
期刊介绍:
Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.