Predicting mito-target interactions for per-and poly-fluoroalkyl compounds: Mapping mitochondrial toxicity on zebrafish voltage-dependent anion channel 2

IF 4.1 2区 环境科学与生态学 Q1 MARINE & FRESHWATER BIOLOGY
Michael González-Durruthy, Amit K. Halder, Ana S. Moura, M. Natalia D.S. Cordeiro
{"title":"Predicting mito-target interactions for per-and poly-fluoroalkyl compounds: Mapping mitochondrial toxicity on zebrafish voltage-dependent anion channel 2","authors":"Michael González-Durruthy,&nbsp;Amit K. Halder,&nbsp;Ana S. Moura,&nbsp;M. Natalia D.S. Cordeiro","doi":"10.1016/j.aquatox.2025.107302","DOIUrl":null,"url":null,"abstract":"<div><div>Effective and reliable prediction for ecotoxicity, especially when affecting different levels of trophic chains, including humans, is increasingly gaining even more prominence as ecosystems face new threats and challenges, as that posed by the per- and poly-fluoroalkyl substances (PFAS). Toxicological prediction of PFAS in aquatic organisms, such as zebrafish, can be efficiently achieved through computational ecotoxicological approaches which are fully aligned with the state-of-the-art of new approach methodologies (NAMs) and current regulatory recommendations. Specifically in this work, the PFAS toxicodynamics interaction on the zebrafish mitochondrial voltage-dependent anion channel (zfVDAC2) was evaluated, mimicking <em>in silico</em> the PFAS bioaccumulation in low-concentration by integrating structure-based virtual screening (SB-VS) and predictive quantitative structure-activity(mitotoxicity) relationship (QSAR) methodologies (e.g., 2D/3D-QSAR) to address mechanistic aspects of PFAS toxicity. The best ranked PFAS pose docked in zfVDAC2 exhibits a ΔG-binding affinity higher than the ATP, i.e., the native substrate of the zfVDAC2 channel, with prevalence of van der Waal interactions, followed by fluorine (F)-halogen-bonds and finally hydrogen-bonds interactions. Mitochondrial ATP-transport blocking is thus suggested to be linked with local-flexibility perturbations in the zfVDAC2. Similarly, the obtained 2D/3D- QSAR models point out the packing density index as the most significant PFAS molecular descriptor to induce toxicity in the zfVDAC2, and mainly involving van der Waal interactions. The predictive and statistical performance of these models further indicate its NAM relevance regarding PFAS risk assessment while highlighting its interoperability and extrapolation capability for the ecotoxicological evaluation of other families of compounds.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"281 ","pages":"Article 107302"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X25000670","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Effective and reliable prediction for ecotoxicity, especially when affecting different levels of trophic chains, including humans, is increasingly gaining even more prominence as ecosystems face new threats and challenges, as that posed by the per- and poly-fluoroalkyl substances (PFAS). Toxicological prediction of PFAS in aquatic organisms, such as zebrafish, can be efficiently achieved through computational ecotoxicological approaches which are fully aligned with the state-of-the-art of new approach methodologies (NAMs) and current regulatory recommendations. Specifically in this work, the PFAS toxicodynamics interaction on the zebrafish mitochondrial voltage-dependent anion channel (zfVDAC2) was evaluated, mimicking in silico the PFAS bioaccumulation in low-concentration by integrating structure-based virtual screening (SB-VS) and predictive quantitative structure-activity(mitotoxicity) relationship (QSAR) methodologies (e.g., 2D/3D-QSAR) to address mechanistic aspects of PFAS toxicity. The best ranked PFAS pose docked in zfVDAC2 exhibits a ΔG-binding affinity higher than the ATP, i.e., the native substrate of the zfVDAC2 channel, with prevalence of van der Waal interactions, followed by fluorine (F)-halogen-bonds and finally hydrogen-bonds interactions. Mitochondrial ATP-transport blocking is thus suggested to be linked with local-flexibility perturbations in the zfVDAC2. Similarly, the obtained 2D/3D- QSAR models point out the packing density index as the most significant PFAS molecular descriptor to induce toxicity in the zfVDAC2, and mainly involving van der Waal interactions. The predictive and statistical performance of these models further indicate its NAM relevance regarding PFAS risk assessment while highlighting its interoperability and extrapolation capability for the ecotoxicological evaluation of other families of compounds.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Aquatic Toxicology
Aquatic Toxicology 环境科学-毒理学
CiteScore
7.10
自引率
4.40%
发文量
250
审稿时长
56 days
期刊介绍: Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems. Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信