Yani Chen , Chunwu Zhang , Ruibin Bai , Tengfang Sun , Weiping Ding , Ruili Wang
{"title":"A review of medical text analysis: Theory and practice","authors":"Yani Chen , Chunwu Zhang , Ruibin Bai , Tengfang Sun , Weiping Ding , Ruili Wang","doi":"10.1016/j.inffus.2025.103024","DOIUrl":null,"url":null,"abstract":"<div><div>Medical data analysis has emerged as an important driving force for smart healthcare with applications ranging from disease analysis to triage, diagnosis, and treatment. Text data plays a crucial role in providing contexts and details that other data types cannot capture alone, making its analysis an indispensable resource in medical research. Natural language processing, a key technology for analyzing and interpreting text, is essential for extracting meaningful insights from medical text data. This systematic review explores the analysis of text data in medicine, focusing on the applications of natural language processing methods. We retrieved a total of 4,784 publications from four databases. After applying rigorous exclusion criteria, 192 relevant publications are selected for in-depth analysis. These studies are evaluated from five critical perspectives: emerging trends of medical text analysis, commonly employed methodologies, major data sources, research topics, and applications in real-world problem-solving. Our analysis provides a comprehensive overview of the current state of medical text analysis, highlighting its advantages, limitations, and future potential. Finally, we identify key challenges and outline future research directions for advancing medical text analysis.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"119 ","pages":"Article 103024"},"PeriodicalIF":14.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525000971","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Medical data analysis has emerged as an important driving force for smart healthcare with applications ranging from disease analysis to triage, diagnosis, and treatment. Text data plays a crucial role in providing contexts and details that other data types cannot capture alone, making its analysis an indispensable resource in medical research. Natural language processing, a key technology for analyzing and interpreting text, is essential for extracting meaningful insights from medical text data. This systematic review explores the analysis of text data in medicine, focusing on the applications of natural language processing methods. We retrieved a total of 4,784 publications from four databases. After applying rigorous exclusion criteria, 192 relevant publications are selected for in-depth analysis. These studies are evaluated from five critical perspectives: emerging trends of medical text analysis, commonly employed methodologies, major data sources, research topics, and applications in real-world problem-solving. Our analysis provides a comprehensive overview of the current state of medical text analysis, highlighting its advantages, limitations, and future potential. Finally, we identify key challenges and outline future research directions for advancing medical text analysis.
期刊介绍:
Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.