Xiao-Lei Cui , Qianxi Sun , Yichun Wang , Shijian Yuan
{"title":"Measurement and calculation method for circumferential plastic strain ratio of anisotropic aluminum alloy tubes","authors":"Xiao-Lei Cui , Qianxi Sun , Yichun Wang , Shijian Yuan","doi":"10.1016/j.ijsolstr.2025.113311","DOIUrl":null,"url":null,"abstract":"<div><div>To improve the finite element analysis (FEA) accuracy of forming hollow tubular components, it is urgent to determine the circumferential mechanical properties of thin-walled tube blanks, especially the plastic strain ratio <em>r<sub>θ</sub></em>, and further investigate their anisotropic deformation and hardening behaviors. In this paper, a new segment-type ring expansion test (SRET) method was established for directly measuring <em>r<sub>θ</sub></em> based on digital image correlation (DIC). It was shown by theoretical analysis that an approximately uniaxial and uniform stress state can be generated when the number of segments is 12 and the initial width-to-diameter ratio of the specimen is about 0.10. It was experimentally proved that the relative error of the measured <em>r<sub>θ</sub></em> of 304 stainless steel welded tube was less than 1 % compared with the <em>r</em>-value of the original 304 sheet. Then, the <em>r<sub>θ</sub></em> of aluminum alloy (6061) tubes was obtained by the SRET method, and the biaxial tensile deformation of the tubes was realized by a controllable biaxial tension test. It is shown that the axial and circumferential plastic strain ratios were 0.460 and 0.638, respectively. The strain path of equal-biaxial stress deviated from the equal-biaxial strain path, and the strain paths of <em>σ<sub>z</sub></em> / <em>σ<sub>θ</sub></em> = 0.75 and 1.333 (reciprocal) were asymmetrically distributed along the equal-biaxial strain line. These results indicate the tubes’ apparent anisotropic deformation behaviors. Finally, the effect of <em>r<sub>θ</sub></em> and yield criterion on predicting the anisotropic hardening behavior was analyzed using the effective stress–strain curve. The results illustrate that <em>r<sub>θ</sub></em> must be considered, and the Balart89 yield criterion with higher order has higher accuracy compared with the Hill48 yield criterion. This research is significant for improving and evaluating the prediction accuracy of plastic constitutive models.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"313 ","pages":"Article 113311"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768325000976","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
To improve the finite element analysis (FEA) accuracy of forming hollow tubular components, it is urgent to determine the circumferential mechanical properties of thin-walled tube blanks, especially the plastic strain ratio rθ, and further investigate their anisotropic deformation and hardening behaviors. In this paper, a new segment-type ring expansion test (SRET) method was established for directly measuring rθ based on digital image correlation (DIC). It was shown by theoretical analysis that an approximately uniaxial and uniform stress state can be generated when the number of segments is 12 and the initial width-to-diameter ratio of the specimen is about 0.10. It was experimentally proved that the relative error of the measured rθ of 304 stainless steel welded tube was less than 1 % compared with the r-value of the original 304 sheet. Then, the rθ of aluminum alloy (6061) tubes was obtained by the SRET method, and the biaxial tensile deformation of the tubes was realized by a controllable biaxial tension test. It is shown that the axial and circumferential plastic strain ratios were 0.460 and 0.638, respectively. The strain path of equal-biaxial stress deviated from the equal-biaxial strain path, and the strain paths of σz / σθ = 0.75 and 1.333 (reciprocal) were asymmetrically distributed along the equal-biaxial strain line. These results indicate the tubes’ apparent anisotropic deformation behaviors. Finally, the effect of rθ and yield criterion on predicting the anisotropic hardening behavior was analyzed using the effective stress–strain curve. The results illustrate that rθ must be considered, and the Balart89 yield criterion with higher order has higher accuracy compared with the Hill48 yield criterion. This research is significant for improving and evaluating the prediction accuracy of plastic constitutive models.
期刊介绍:
The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.