Complexity and interactions of climatic variables affecting winter wheat photosynthesis in the North China Plain

IF 4.5 1区 农林科学 Q1 AGRONOMY
Rongjun Wu , Xinzhi Shen , Bo Shang , Jiacheng Zhao , Evgenios Agathokleous , Zhaozhong Feng
{"title":"Complexity and interactions of climatic variables affecting winter wheat photosynthesis in the North China Plain","authors":"Rongjun Wu ,&nbsp;Xinzhi Shen ,&nbsp;Bo Shang ,&nbsp;Jiacheng Zhao ,&nbsp;Evgenios Agathokleous ,&nbsp;Zhaozhong Feng","doi":"10.1016/j.eja.2025.127568","DOIUrl":null,"url":null,"abstract":"<div><div>Investigating the impact of climate change on crop photosynthesis is crucial for evaluating yield loss and ensuring food security. While previous studies have explored the effects of temperature, vapor pressure deficit (VPD), and soil moisture (SM) on crop photosynthesis in specific locations or ecosystems, large-scale analyses remain limited. This study provides a comprehensive evaluation of the sensitivities and contributions of temperature, VPD, plant available water (PAW), and other climatic factors to winter wheat photosynthesis in the North China Plain (NCP) from 2001 to 2019, utilizing remotely sensed solar-induced chlorophyll fluorescence (SIF) data. Our findings indicate a significant increase in SIF during both the vegetative growth period (VGP) and reproductive growth period (RGP), with trends in climatic factors influencing SIF over the past two decades. The sensitivity of SIF to temperature, VPD, and PAW was more pronounced during the VGP compared to the RGP, suggesting that climatic variability has a greater impact on photosynthesis prior to the heading stage of winter wheat. VPD emerged as a major negative contributor to SIF variation in both periods, followed by temperature during the VGP and PAW during the RGP. Notably, when VPD dropped below the thresholds of 0.83 kPa during the VGP and 1.11 kPa during the RGP, the sensitivity of photosynthetic capacity significantly decreased. Structural equation modeling (SEM) revealed that the negative indirect effects of temperature on SIF through VPD counterbalanced its positive direct effects, while the positive indirect effects of PAW via VPD enhanced its direct effects. Overall, the increase in VPD and the significant decrease in PAW had a substantial negative impact on winter wheat photosynthesis, particularly during the RGP in the NCP. These results offer a quantitative and comprehensive assessment of the influence of rising VPD on the photosynthetic capacity of winter wheat in the context of climate warming and diminishing SM, while also highlighting the significance of growth stage at the system scale for a more meaningful ecophysiological understanding.</div></div>","PeriodicalId":51045,"journal":{"name":"European Journal of Agronomy","volume":"166 ","pages":"Article 127568"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Agronomy","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1161030125000644","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Investigating the impact of climate change on crop photosynthesis is crucial for evaluating yield loss and ensuring food security. While previous studies have explored the effects of temperature, vapor pressure deficit (VPD), and soil moisture (SM) on crop photosynthesis in specific locations or ecosystems, large-scale analyses remain limited. This study provides a comprehensive evaluation of the sensitivities and contributions of temperature, VPD, plant available water (PAW), and other climatic factors to winter wheat photosynthesis in the North China Plain (NCP) from 2001 to 2019, utilizing remotely sensed solar-induced chlorophyll fluorescence (SIF) data. Our findings indicate a significant increase in SIF during both the vegetative growth period (VGP) and reproductive growth period (RGP), with trends in climatic factors influencing SIF over the past two decades. The sensitivity of SIF to temperature, VPD, and PAW was more pronounced during the VGP compared to the RGP, suggesting that climatic variability has a greater impact on photosynthesis prior to the heading stage of winter wheat. VPD emerged as a major negative contributor to SIF variation in both periods, followed by temperature during the VGP and PAW during the RGP. Notably, when VPD dropped below the thresholds of 0.83 kPa during the VGP and 1.11 kPa during the RGP, the sensitivity of photosynthetic capacity significantly decreased. Structural equation modeling (SEM) revealed that the negative indirect effects of temperature on SIF through VPD counterbalanced its positive direct effects, while the positive indirect effects of PAW via VPD enhanced its direct effects. Overall, the increase in VPD and the significant decrease in PAW had a substantial negative impact on winter wheat photosynthesis, particularly during the RGP in the NCP. These results offer a quantitative and comprehensive assessment of the influence of rising VPD on the photosynthetic capacity of winter wheat in the context of climate warming and diminishing SM, while also highlighting the significance of growth stage at the system scale for a more meaningful ecophysiological understanding.
影响华北平原冬小麦光合作用的气候变量的复杂性和相互作用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Agronomy
European Journal of Agronomy 农林科学-农艺学
CiteScore
8.30
自引率
7.70%
发文量
187
审稿时长
4.5 months
期刊介绍: The European Journal of Agronomy, the official journal of the European Society for Agronomy, publishes original research papers reporting experimental and theoretical contributions to field-based agronomy and crop science. The journal will consider research at the field level for agricultural, horticultural and tree crops, that uses comprehensive and explanatory approaches. The EJA covers the following topics: crop physiology crop production and management including irrigation, fertilization and soil management agroclimatology and modelling plant-soil relationships crop quality and post-harvest physiology farming and cropping systems agroecosystems and the environment crop-weed interactions and management organic farming horticultural crops papers from the European Society for Agronomy bi-annual meetings In determining the suitability of submitted articles for publication, particular scrutiny is placed on the degree of novelty and significance of the research and the extent to which it adds to existing knowledge in agronomy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信