Superb impact resistance of nano-precipitation-strengthened high-entropy alloys

Ao Fu , Bin Liu , Zezhou Li , Tao Yang , YuanKui Cao , Junyang He , Bingfeng Wang , Jia Li , Qihong Fang , Xingwang Cheng , Marc A. Meyers , Yong Liu
{"title":"Superb impact resistance of nano-precipitation-strengthened high-entropy alloys","authors":"Ao Fu ,&nbsp;Bin Liu ,&nbsp;Zezhou Li ,&nbsp;Tao Yang ,&nbsp;YuanKui Cao ,&nbsp;Junyang He ,&nbsp;Bingfeng Wang ,&nbsp;Jia Li ,&nbsp;Qihong Fang ,&nbsp;Xingwang Cheng ,&nbsp;Marc A. Meyers ,&nbsp;Yong Liu","doi":"10.1016/j.apmate.2025.100277","DOIUrl":null,"url":null,"abstract":"<div><div>Critical engineering applications, such as landing gears and armor protection, require structural materials withstanding high strength and significant plastic deformation. Nanoprecipitate-strengthened high-entropy alloys (HEAs) are considered as promising candidates for structural applications due to their enhanced strength and exceptional work-hardening capability. Herein, we report a FeCoNiAlTi-type HEA that achieves ultrahigh gigapascal yield strength from quasi-static to dynamic loading conditions and superb resistance to adiabatic shear failure. This is accomplished by introducing high-density coherent L1<sub>2</sub> nanoprecipitates. Multiscale characterization and molecular dynamics simulation demonstrate that the L1<sub>2</sub> nanoprecipitates exhibit multiple functions during impact, not only as the dislocation barrier and the dislocation transmission medium, but also as energy-absorbing islands that disperse the stress spikes through order-to-disorder transition, which result in extraordinary impact resistance. These findings shed light on the development of novel impact-resistant metallic materials.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"4 2","pages":"Article 100277"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X25000132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Critical engineering applications, such as landing gears and armor protection, require structural materials withstanding high strength and significant plastic deformation. Nanoprecipitate-strengthened high-entropy alloys (HEAs) are considered as promising candidates for structural applications due to their enhanced strength and exceptional work-hardening capability. Herein, we report a FeCoNiAlTi-type HEA that achieves ultrahigh gigapascal yield strength from quasi-static to dynamic loading conditions and superb resistance to adiabatic shear failure. This is accomplished by introducing high-density coherent L12 nanoprecipitates. Multiscale characterization and molecular dynamics simulation demonstrate that the L12 nanoprecipitates exhibit multiple functions during impact, not only as the dislocation barrier and the dislocation transmission medium, but also as energy-absorbing islands that disperse the stress spikes through order-to-disorder transition, which result in extraordinary impact resistance. These findings shed light on the development of novel impact-resistant metallic materials.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信